{"title":"从化学中的共价过渡态到生物学中的非共价过渡态:从蛋白质折叠的β值分析到Φ值分析","authors":"Alan R. Fersht","doi":"10.1017/s0033583523000045","DOIUrl":null,"url":null,"abstract":"<p>Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted’s landmark paper that introduced the <span>β</span>-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, <span>Φ-</span>value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding – ‘part (b) of the protein folding problem’. This review describes the development of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319154243416-0840:S0033583523000045:S0033583523000045_inline301.png\"><span data-mathjax-type=\"texmath\"><span>$ {\\varPhi } $</span></span></img></span></span>-value analysis of transition states and compares and contrasts the interpretation of <span>β</span>- and <span>Φ-</span>values and their limitations. <span>Φ-</span>analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. <span>Φ-</span>analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. <span>Φ-</span>values are used to benchmark computer simulation, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319154243416-0840:S0033583523000045:S0033583523000045_inline302.png\"><span data-mathjax-type=\"texmath\"><span>$ {\\varPhi } $</span></span></img></span></span> and simulation combine to describe folding pathways at atomic resolution.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"22 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding\",\"authors\":\"Alan R. Fersht\",\"doi\":\"10.1017/s0033583523000045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted’s landmark paper that introduced the <span>β</span>-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, <span>Φ-</span>value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding – ‘part (b) of the protein folding problem’. This review describes the development of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319154243416-0840:S0033583523000045:S0033583523000045_inline301.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ {\\\\varPhi } $</span></span></img></span></span>-value analysis of transition states and compares and contrasts the interpretation of <span>β</span>- and <span>Φ-</span>values and their limitations. <span>Φ-</span>analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. <span>Φ-</span>analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. <span>Φ-</span>values are used to benchmark computer simulation, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319154243416-0840:S0033583523000045:S0033583523000045_inline302.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ {\\\\varPhi } $</span></span></img></span></span> and simulation combine to describe folding pathways at atomic resolution.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/s0033583523000045\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0033583523000045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted’s landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding – ‘part (b) of the protein folding problem’. This review describes the development of $ {\varPhi } $-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and $ {\varPhi } $ and simulation combine to describe folding pathways at atomic resolution.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.