利用自适应网格细化的边界数据浸入法模拟流固耦合效应

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal for Numerical Methods in Fluids Pub Date : 2024-03-18 DOI:10.1002/fld.5283
Yuan Wang, Wei Ge
{"title":"利用自适应网格细化的边界数据浸入法模拟流固耦合效应","authors":"Yuan Wang,&nbsp;Wei Ge","doi":"10.1002/fld.5283","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fluid-structure interaction is simulated using the boundary data immersion method. As the fluid-structure interface is smeared in the smoothing region, deviations are incurred in fluid simulations. For compressible flow, high order difference schemes with more mesh cells for the stencils are usually employed to achieve high overall accuracy, but near interfaces it requires wider smoothing region of several mesh cells for computational stability and hence lowers its accuracy significantly. To address this issue, the proposed algorithm switches to lower order difference schemes near the interfaces and applies adaptive mesh refining there to compensate the accuracy loss. Implemented with Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), the algorithm shows notable improvement in the overall accuracy and efficiency in cases such as channel flow and flow past a cylinder. The algorithm is used to simulate the shock wave past a fixed or free cylinder with Ma <span></span><math>\n <semantics>\n <mrow>\n <mo>=</mo>\n <mn>2</mn>\n <mo>.</mo>\n <mn>67</mn>\n </mrow>\n <annotation>$$ =2.67 $$</annotation>\n </semantics></math> and Re <span></span><math>\n <semantics>\n <mrow>\n <mo>=</mo>\n <mn>1482</mn>\n </mrow>\n <annotation>$$ =1482 $$</annotation>\n </semantics></math>, which reveals the relaxation process and the temporal evolution of the drag coefficient, it goes through a valley and maintains at relatively high value for the fixed cylinder, while that of the free cylinder tends to decrease in fluctuation which is found to be caused by the interaction between the forward moving cylinder and vortexes in the unsteady wake.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of fluid-structure interaction using the boundary data immersion method with adaptive mesh refinement\",\"authors\":\"Yuan Wang,&nbsp;Wei Ge\",\"doi\":\"10.1002/fld.5283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The fluid-structure interaction is simulated using the boundary data immersion method. As the fluid-structure interface is smeared in the smoothing region, deviations are incurred in fluid simulations. For compressible flow, high order difference schemes with more mesh cells for the stencils are usually employed to achieve high overall accuracy, but near interfaces it requires wider smoothing region of several mesh cells for computational stability and hence lowers its accuracy significantly. To address this issue, the proposed algorithm switches to lower order difference schemes near the interfaces and applies adaptive mesh refining there to compensate the accuracy loss. Implemented with Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), the algorithm shows notable improvement in the overall accuracy and efficiency in cases such as channel flow and flow past a cylinder. The algorithm is used to simulate the shock wave past a fixed or free cylinder with Ma <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>=</mo>\\n <mn>2</mn>\\n <mo>.</mo>\\n <mn>67</mn>\\n </mrow>\\n <annotation>$$ =2.67 $$</annotation>\\n </semantics></math> and Re <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>=</mo>\\n <mn>1482</mn>\\n </mrow>\\n <annotation>$$ =1482 $$</annotation>\\n </semantics></math>, which reveals the relaxation process and the temporal evolution of the drag coefficient, it goes through a valley and maintains at relatively high value for the fixed cylinder, while that of the free cylinder tends to decrease in fluctuation which is found to be caused by the interaction between the forward moving cylinder and vortexes in the unsteady wake.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5283\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5283","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 采用边界数据浸入法模拟流体与结构之间的相互作用。由于流固界面在平滑区域被抹平,因此在流体模拟中会产生偏差。对于可压缩流,通常采用网格单元较多的高阶差分方案来实现较高的整体精度,但在界面附近,为了计算的稳定性,需要多个网格单元的较宽平滑区域,因此精度大大降低。为解决这一问题,所提出的算法在界面附近切换到低阶差分方案,并在此应用自适应网格细化来补偿精度损失。该算法采用结构化自适应网格细化应用基础架构(SAMRAI),在通道流和流过圆柱体等情况下,整体精度和效率都有显著提高。该算法用于模拟冲击波流过具有 Ma 和 Re 值的固定圆柱体或自由圆柱体的情况,结果显示了阻力系数的弛豫过程和时间演化,固定圆柱体的阻力系数经历了一个低谷,并保持在相对较高的值,而自由圆柱体的阻力系数则在波动中趋于下降,这是由向前运动的圆柱体与不稳定尾流中的涡旋之间的相互作用引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of fluid-structure interaction using the boundary data immersion method with adaptive mesh refinement

The fluid-structure interaction is simulated using the boundary data immersion method. As the fluid-structure interface is smeared in the smoothing region, deviations are incurred in fluid simulations. For compressible flow, high order difference schemes with more mesh cells for the stencils are usually employed to achieve high overall accuracy, but near interfaces it requires wider smoothing region of several mesh cells for computational stability and hence lowers its accuracy significantly. To address this issue, the proposed algorithm switches to lower order difference schemes near the interfaces and applies adaptive mesh refining there to compensate the accuracy loss. Implemented with Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), the algorithm shows notable improvement in the overall accuracy and efficiency in cases such as channel flow and flow past a cylinder. The algorithm is used to simulate the shock wave past a fixed or free cylinder with Ma = 2 . 67 $$ =2.67 $$ and Re = 1482 $$ =1482 $$ , which reveals the relaxation process and the temporal evolution of the drag coefficient, it goes through a valley and maintains at relatively high value for the fixed cylinder, while that of the free cylinder tends to decrease in fluctuation which is found to be caused by the interaction between the forward moving cylinder and vortexes in the unsteady wake.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
期刊最新文献
Semi‐implicit Lagrangian Voronoi approximation for the incompressible Navier–Stokes equations A new non‐equilibrium modification of the k−ω$$ k-\omega $$ turbulence model for supersonic turbulent flows with transverse jet Response surface method‐based hydraulic performance optimization of a single‐stage centrifugal pump Development of a new solver for homogenous mixture based on regularized gas dynamic equation system Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1