{"title":"振荡渗透介质上化学反应流体流动的瞬态磁流体力学传热传质分析","authors":"Ashirbad Kumar Rath, Itishree Nayak, Sukanya Padhi","doi":"10.1142/s0217979225500316","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the numerical observation of the convective motion of chemically active magnetohydrodynamic (MHD) fluid through a vertically oriented permeable medium, incorporating variations in mass and heat transfer. The fluid type is assumed to be incompressible, chemically strongly ionized and viscous with some mass infusibility. The model associated with this problem is solved by a highly stable Implicit Finite Difference Method (IFDM). The method is used for small and large deflection of the physical parameters, which results in a noticeable fluid flow behavior. Numerical configuration is graphically depicted to scrutinize the fluid behavior. The momentum, energy, concentration diffusion, skin friction, Nusselt number and Sherwood number are investigated for numerous factors such as magnetic field, permeability and chemical reaction rate. The current study unveils significant findings, demonstrating that a heightened rate of chemical reaction in the presence of magnetic effects, coupled with specific porosity, diminishes ionization energy, resulting in a concurrent decrease in the concentration and momentum profiles of the fluid flow. The rise in the viscous diffusion rate is attributed to escalating values of the Schmidt number, causing an augmentation in dynamic viscosity and consequently resulting in an overall reduction in the momentum of the fluid flow.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"64 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient magnetohydrodynamic heat and mass transfer analysis of chemically reacting fluid flow over oscillatory permeable media\",\"authors\":\"Ashirbad Kumar Rath, Itishree Nayak, Sukanya Padhi\",\"doi\":\"10.1142/s0217979225500316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the numerical observation of the convective motion of chemically active magnetohydrodynamic (MHD) fluid through a vertically oriented permeable medium, incorporating variations in mass and heat transfer. The fluid type is assumed to be incompressible, chemically strongly ionized and viscous with some mass infusibility. The model associated with this problem is solved by a highly stable Implicit Finite Difference Method (IFDM). The method is used for small and large deflection of the physical parameters, which results in a noticeable fluid flow behavior. Numerical configuration is graphically depicted to scrutinize the fluid behavior. The momentum, energy, concentration diffusion, skin friction, Nusselt number and Sherwood number are investigated for numerous factors such as magnetic field, permeability and chemical reaction rate. The current study unveils significant findings, demonstrating that a heightened rate of chemical reaction in the presence of magnetic effects, coupled with specific porosity, diminishes ionization energy, resulting in a concurrent decrease in the concentration and momentum profiles of the fluid flow. The rise in the viscous diffusion rate is attributed to escalating values of the Schmidt number, causing an augmentation in dynamic viscosity and consequently resulting in an overall reduction in the momentum of the fluid flow.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500316\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500316","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Transient magnetohydrodynamic heat and mass transfer analysis of chemically reacting fluid flow over oscillatory permeable media
This study focuses on the numerical observation of the convective motion of chemically active magnetohydrodynamic (MHD) fluid through a vertically oriented permeable medium, incorporating variations in mass and heat transfer. The fluid type is assumed to be incompressible, chemically strongly ionized and viscous with some mass infusibility. The model associated with this problem is solved by a highly stable Implicit Finite Difference Method (IFDM). The method is used for small and large deflection of the physical parameters, which results in a noticeable fluid flow behavior. Numerical configuration is graphically depicted to scrutinize the fluid behavior. The momentum, energy, concentration diffusion, skin friction, Nusselt number and Sherwood number are investigated for numerous factors such as magnetic field, permeability and chemical reaction rate. The current study unveils significant findings, demonstrating that a heightened rate of chemical reaction in the presence of magnetic effects, coupled with specific porosity, diminishes ionization energy, resulting in a concurrent decrease in the concentration and momentum profiles of the fluid flow. The rise in the viscous diffusion rate is attributed to escalating values of the Schmidt number, causing an augmentation in dynamic viscosity and consequently resulting in an overall reduction in the momentum of the fluid flow.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.