纵向研究中的无应答偏差分析:应用于幼儿纵向研究的比较综述

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY International Statistical Review Pub Date : 2024-03-19 DOI:10.1111/insr.12566
Yajuan Si, Roderick J.A. Little, Ya Mo, Nell Sedransk
{"title":"纵向研究中的无应答偏差分析:应用于幼儿纵向研究的比较综述","authors":"Yajuan Si,&nbsp;Roderick J.A. Little,&nbsp;Ya Mo,&nbsp;Nell Sedransk","doi":"10.1111/insr.12566","DOIUrl":null,"url":null,"abstract":"<p>Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modelling and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments can be effective when the constructed weights are correlated with the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates in the ECLS-K:2011 application. The strength of evidence about our NRBA depends on the strength of the relationship between the fully observed variables and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.</p>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12566","citationCount":"0","resultStr":"{\"title\":\"Nonresponse Bias Analysis in Longitudinal Studies: A Comparative Review with an Application to the Early Childhood Longitudinal Study\",\"authors\":\"Yajuan Si,&nbsp;Roderick J.A. Little,&nbsp;Ya Mo,&nbsp;Nell Sedransk\",\"doi\":\"10.1111/insr.12566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modelling and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments can be effective when the constructed weights are correlated with the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates in the ECLS-K:2011 application. The strength of evidence about our NRBA depends on the strength of the relationship between the fully observed variables and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.</p>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12566\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12566\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12566","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要纵向研究会受到无应答的影响,即个人未能提供整个调查波次或特定问题的数据。我们比较了纵向研究中的无应答偏差分析(NRBA)方法,并在《2010-2011 年幼儿园班级幼儿纵向研究》(ECLS-K:2011)中进行了说明。带有自然减员的波形非响应通常会产生单调的缺失模式,缺失机制可以是随机缺失(MAR)或非随机缺失(MNAR)。我们讨论了针对单调模式的加权、多重估算(MI)、不完整数据建模和贝叶斯方法的 NRBA。当构建的权重与所关注的调查结果相关时,加权调整会很有效。MI 允许将缺失值变量纳入估算模型,从而减少偏差,提高估算效率。我们在 MAR 结果中添加了偏移量,以提供敏感性分析,评估 MNAR 偏差。我们对 ECLS-K:2011 应用程序中的描述性摘要和分析模型估计值进行了 NRBA。我们的 NRBA 证据的强度取决于完全观测变量与关键调查结果之间关系的强度,因此成功进行 NRBA 的关键在于纳入强有力的预测因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonresponse Bias Analysis in Longitudinal Studies: A Comparative Review with an Application to the Early Childhood Longitudinal Study

Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modelling and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments can be effective when the constructed weights are correlated with the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates in the ECLS-K:2011 application. The strength of evidence about our NRBA depends on the strength of the relationship between the fully observed variables and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
期刊最新文献
Issue Information Statistics: Multivariate Data Integration Using R; Methods and Applications With the mixOmics Package Kim-Anh Lê Cao, Zoe Marie WelhamChapman & Hall/CRC, 2021, xxi + 308 pages, £84.99/$115.00, hardcover ISBN: 978-1032128078 eBook ISBN: 9781003026860 Philosophies, Puzzles, and Paradoxes: A Statistician's Search for the Truth Yudi Pawitan and Youngjo LeeChapman & Hall/CRC, 2024, xiv + 351 pages, £18.39/$23.96 paperback, £104/$136 hardback, £17.24/$22.46 eBook ISBN: 9781032377391 paperback; 9781032377407 hardback; 9781003341659 ebook Machine Learning Theory and Applications: Hands-On Use Cases With Python on Classical and Quantum Machines, Xavier Vasques, John Wiley & Sons, 2024, xx + 487 pages, $89.95, hardcover ISBN: 978-1-394-22061-8 Object Oriented Data Analysis J. S. Marron and I. L. DrydenChapman & Hall/CRC, 2022, xii + 424 pages, softcover ISBN: 978-0-8153-9282-8 (hbk) ISBN: 978-1-032-11480-4 (pbk) ISBN: 978-1-351-18967-5 (ebk)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1