用深度学习求解各向异性扩散方程的保守正向保留方法

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Computational Physics Pub Date : 2024-03-01 DOI:10.4208/cicp.oa-2023-0180
Hui Xie,Li Liu,Chuanlei Zhai,Xuejun Xu, Heng Yong
{"title":"用深度学习求解各向异性扩散方程的保守正向保留方法","authors":"Hui Xie,Li Liu,Chuanlei Zhai,Xuejun Xu, Heng Yong","doi":"10.4208/cicp.oa-2023-0180","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a conservative and positivity-preserving method\nto solve the anisotropic diffusion equations with the physics-informed neural network\n(PINN). Due to the possible complicated discontinuity of diffusion coefficients, without employing multiple neural networks, we approximate the solution and its gradients by one single neural network with a novel first-order loss formulation. It is proven\nthat the learned solution with this loss formulation only has the $\\mathcal{O}(\\varepsilon)$ flux conservation error theoretically, where the parameter $\\varepsilon$ is small and user-defined, while the loss\nformulation with the original PDE with/without flux conservation constraints may\nhave $\\mathcal{O}(1)$ flux conservation error. To keep positivity with the neural network approximation, some positive functions are applied to the primal neural network solution.\nThis loss formulation with some observation data can also be employed to identify the\nunknown discontinuous coefficients. Compared with the usual PINN even with the\ndirect flux conservation constraints, it is shown that our method can significantly improve the solution accuracy due to the better flux conservation property, and indeed\npreserve the positivity strictly for the forward problems. It can predict the discontinuous diffusion coefficients accurately in the inverse problems setting.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"24 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conservative and Positivity-Preserving Method for Solving Anisotropic Diffusion Equations with Deep Learning\",\"authors\":\"Hui Xie,Li Liu,Chuanlei Zhai,Xuejun Xu, Heng Yong\",\"doi\":\"10.4208/cicp.oa-2023-0180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a conservative and positivity-preserving method\\nto solve the anisotropic diffusion equations with the physics-informed neural network\\n(PINN). Due to the possible complicated discontinuity of diffusion coefficients, without employing multiple neural networks, we approximate the solution and its gradients by one single neural network with a novel first-order loss formulation. It is proven\\nthat the learned solution with this loss formulation only has the $\\\\mathcal{O}(\\\\varepsilon)$ flux conservation error theoretically, where the parameter $\\\\varepsilon$ is small and user-defined, while the loss\\nformulation with the original PDE with/without flux conservation constraints may\\nhave $\\\\mathcal{O}(1)$ flux conservation error. To keep positivity with the neural network approximation, some positive functions are applied to the primal neural network solution.\\nThis loss formulation with some observation data can also be employed to identify the\\nunknown discontinuous coefficients. Compared with the usual PINN even with the\\ndirect flux conservation constraints, it is shown that our method can significantly improve the solution accuracy due to the better flux conservation property, and indeed\\npreserve the positivity strictly for the forward problems. It can predict the discontinuous diffusion coefficients accurately in the inverse problems setting.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0180\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0180","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种用物理信息神经网络(PINN)求解各向异性扩散方程的保守正向保留方法。由于扩散系数可能存在复杂的不连续性,在不使用多个神经网络的情况下,我们使用一种新颖的一阶损失公式通过单个神经网络逼近解及其梯度。事实证明,使用这种损失公式学习到的解理论上只有 $\mathcal{O}(\varepsilon)$ 流量守恒误差,其中参数 $\varepsilon$ 很小且由用户定义,而使用带/不带流量守恒约束的原始 PDE 的损失公式可能会有 $\mathcal{O}(1)$ 流量守恒误差。为了保持神经网络近似的正向性,一些正向函数被应用到原始神经网络解中,这种带有一些观测数据的损失公式也可以用来识别未知的不连续系数。结果表明,与通常的 PINN 相比,即使在直接通量守恒约束条件下,我们的方法也能因更好的通量守恒特性而显著提高求解精度,而且对于正向问题,我们的方法确实严格地保留了正向性。在反演问题中,它可以准确预测不连续扩散系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Conservative and Positivity-Preserving Method for Solving Anisotropic Diffusion Equations with Deep Learning
In this paper, we propose a conservative and positivity-preserving method to solve the anisotropic diffusion equations with the physics-informed neural network (PINN). Due to the possible complicated discontinuity of diffusion coefficients, without employing multiple neural networks, we approximate the solution and its gradients by one single neural network with a novel first-order loss formulation. It is proven that the learned solution with this loss formulation only has the $\mathcal{O}(\varepsilon)$ flux conservation error theoretically, where the parameter $\varepsilon$ is small and user-defined, while the loss formulation with the original PDE with/without flux conservation constraints may have $\mathcal{O}(1)$ flux conservation error. To keep positivity with the neural network approximation, some positive functions are applied to the primal neural network solution. This loss formulation with some observation data can also be employed to identify the unknown discontinuous coefficients. Compared with the usual PINN even with the direct flux conservation constraints, it is shown that our method can significantly improve the solution accuracy due to the better flux conservation property, and indeed preserve the positivity strictly for the forward problems. It can predict the discontinuous diffusion coefficients accurately in the inverse problems setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
期刊最新文献
A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations A Causality-DeepONet for Causal Responses of Linear Dynamical Systems JefiPIC: A 3-D Full Electromagnetic Particle-in-Cell Simulator Based on Jefimenko’s Equations on GPU A Comparative Study of Hydrodynamic Lattice Boltzmann Equation in Phase-Field-Based Multiphase Flow Models Finite-Volume TENO Scheme with a New Cell-Interface Flux Evaluation Strategy for Unstructured Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1