红细胞释放氧气的强度与红细胞在淤泥中聚集程度的关系

IF 4.033 Q4 Biochemistry, Genetics and Molecular Biology Biophysics Pub Date : 2024-03-18 DOI:10.1134/S0006350923060167
I. A. Ponomarev, G. Th. Guria
{"title":"红细胞释放氧气的强度与红细胞在淤泥中聚集程度的关系","authors":"I. A. Ponomarev,&nbsp;G. Th. Guria","doi":"10.1134/S0006350923060167","DOIUrl":null,"url":null,"abstract":"<p>An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.</p>","PeriodicalId":493,"journal":{"name":"Biophysics","volume":null,"pages":null},"PeriodicalIF":4.0330,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dependence of the Oxygen Release Intensity from Erythrocytes on the Degree of Their Clustering in Sludges\",\"authors\":\"I. A. Ponomarev,&nbsp;G. Th. Guria\",\"doi\":\"10.1134/S0006350923060167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.</p>\",\"PeriodicalId\":493,\"journal\":{\"name\":\"Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0330,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006350923060167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0006350923060167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

摘要 红细胞释放氧气的效率在很大程度上取决于红细胞在微血管中的运动状态。考虑到红细胞在血管内形成淤泥的能力,我们构建并研究了氧传递的数学模型。得出了氧释放强度与红细胞淤积物大小关系的分析表达式。讨论了所得结果对红细胞氧气传输能力的快速诊断可能具有的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Dependence of the Oxygen Release Intensity from Erythrocytes on the Degree of Their Clustering in Sludges

An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysics
Biophysics Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.20
自引率
0.00%
发文量
67
期刊介绍: Biophysics is a multidisciplinary international peer reviewed journal that covers a wide scope of problems related to the main physical mechanisms of processes taking place at different organization levels in biosystems. It includes structure and dynamics of macromolecules, cells and tissues; the influence of environment; energy transformation and transfer; thermodynamics; biological motility; population dynamics and cell differentiation modeling; biomechanics and tissue rheology; nonlinear phenomena, mathematical and cybernetics modeling of complex systems; and computational biology. The journal publishes short communications devoted and review articles.
期刊最新文献
Reductive Nitrosylation of Hemoglobin and Myoglobin and its Antioxidant Effect Supercomputer Simulation of Intramolecular Oscillations of Glycine, Diphenylalanine, and Tryptophan in an Electric Field of the Terahertz and Infrared Ranges On the Role of Priming in the Development of Modern Rehabilitation Technologies The Inhibitory Effect of Oxibiol on the Process of Protein Modification by Water-Soluble Products of Photo-Oxidative Destruction of Bisretinoid A2E An X-Ray Diffraction Study of Lipid Films with ICHPHAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1