{"title":"红细胞释放氧气的强度与红细胞在淤泥中聚集程度的关系","authors":"I. A. Ponomarev, G. Th. Guria","doi":"10.1134/S0006350923060167","DOIUrl":null,"url":null,"abstract":"<p>An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.</p>","PeriodicalId":493,"journal":{"name":"Biophysics","volume":"68 6","pages":"1004 - 1012"},"PeriodicalIF":4.0330,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dependence of the Oxygen Release Intensity from Erythrocytes on the Degree of Their Clustering in Sludges\",\"authors\":\"I. A. Ponomarev, G. Th. Guria\",\"doi\":\"10.1134/S0006350923060167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.</p>\",\"PeriodicalId\":493,\"journal\":{\"name\":\"Biophysics\",\"volume\":\"68 6\",\"pages\":\"1004 - 1012\"},\"PeriodicalIF\":4.0330,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006350923060167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0006350923060167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The Dependence of the Oxygen Release Intensity from Erythrocytes on the Degree of Their Clustering in Sludges
An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.
BiophysicsBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.20
自引率
0.00%
发文量
67
期刊介绍:
Biophysics is a multidisciplinary international peer reviewed journal that covers a wide scope of problems related to the main physical mechanisms of processes taking place at different organization levels in biosystems. It includes structure and dynamics of macromolecules, cells and tissues; the influence of environment; energy transformation and transfer; thermodynamics; biological motility; population dynamics and cell differentiation modeling; biomechanics and tissue rheology; nonlinear phenomena, mathematical and cybernetics modeling of complex systems; and computational biology. The journal publishes short communications devoted and review articles.