{"title":"利用无创多通道脑电图和混合深度学习架构加强情绪检测","authors":"Durgesh Nandini, Jyoti Yadav, Asha Rani, Vijander Singh","doi":"10.1007/s40998-024-00710-4","DOIUrl":null,"url":null,"abstract":"<p>Emotion recognition is vital for augmenting human–computer interactions by integrating emotional contextual information for enhanced communication. Hence, the study presents an intelligent emotion detection system developed utilizing hybrid stacked gated recurrent units (GRU)-recurrent neural network (RNN) deep learning architecture. Integration of GRU with RNN allows the system to make use of both models’ capabilities, making it better at capturing complex emotional patterns and temporal correlations. The EEG signals are investigated in time, frequency, and time–frequency domains, meticulously curated to capture intricate multi-domain patterns. Then, the SMOTE-Tomek method ensures a uniform class distribution, while the PCA technique optimizes features by minimizing data redundancy. A comprehensive experimentation including the well-established emotion datasets: DEAP and AMIGOS, assesses the efficacy of the hybrid stacked GRU and RNN architecture in contrast to 1D convolution neural network, RNN and GRU models. Moreover, the “Hyperopt” technique fine-tunes the model’s hyperparameter, improving the average accuracy by about 3.73%. Hence, results revealed that the hybrid GRU-RNN model demonstrates the most optimal performance with the highest classification accuracies of 99.77% ± 0.13, 99.54% ± 0.16, 99.82% ± 0.14, and 99.68% ± 0.13 for the 3D VAD and liking parameter, respectively. Furthermore, the model’s generalizability is examined using the cross-subject and database analysis on the DEAP and AMIGOS datasets, exhibiting a classification with an average accuracy of about 99.75% ± 0.10 and 99.97% ± 0.03. Obtained results when compared with the existing methods in literature demonstrate superior performance, highlighting potential in emotion recognition.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"26 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Emotion Detection with Non-invasive Multi-Channel EEG and Hybrid Deep Learning Architecture\",\"authors\":\"Durgesh Nandini, Jyoti Yadav, Asha Rani, Vijander Singh\",\"doi\":\"10.1007/s40998-024-00710-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emotion recognition is vital for augmenting human–computer interactions by integrating emotional contextual information for enhanced communication. Hence, the study presents an intelligent emotion detection system developed utilizing hybrid stacked gated recurrent units (GRU)-recurrent neural network (RNN) deep learning architecture. Integration of GRU with RNN allows the system to make use of both models’ capabilities, making it better at capturing complex emotional patterns and temporal correlations. The EEG signals are investigated in time, frequency, and time–frequency domains, meticulously curated to capture intricate multi-domain patterns. Then, the SMOTE-Tomek method ensures a uniform class distribution, while the PCA technique optimizes features by minimizing data redundancy. A comprehensive experimentation including the well-established emotion datasets: DEAP and AMIGOS, assesses the efficacy of the hybrid stacked GRU and RNN architecture in contrast to 1D convolution neural network, RNN and GRU models. Moreover, the “Hyperopt” technique fine-tunes the model’s hyperparameter, improving the average accuracy by about 3.73%. Hence, results revealed that the hybrid GRU-RNN model demonstrates the most optimal performance with the highest classification accuracies of 99.77% ± 0.13, 99.54% ± 0.16, 99.82% ± 0.14, and 99.68% ± 0.13 for the 3D VAD and liking parameter, respectively. Furthermore, the model’s generalizability is examined using the cross-subject and database analysis on the DEAP and AMIGOS datasets, exhibiting a classification with an average accuracy of about 99.75% ± 0.10 and 99.97% ± 0.03. Obtained results when compared with the existing methods in literature demonstrate superior performance, highlighting potential in emotion recognition.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00710-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00710-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing Emotion Detection with Non-invasive Multi-Channel EEG and Hybrid Deep Learning Architecture
Emotion recognition is vital for augmenting human–computer interactions by integrating emotional contextual information for enhanced communication. Hence, the study presents an intelligent emotion detection system developed utilizing hybrid stacked gated recurrent units (GRU)-recurrent neural network (RNN) deep learning architecture. Integration of GRU with RNN allows the system to make use of both models’ capabilities, making it better at capturing complex emotional patterns and temporal correlations. The EEG signals are investigated in time, frequency, and time–frequency domains, meticulously curated to capture intricate multi-domain patterns. Then, the SMOTE-Tomek method ensures a uniform class distribution, while the PCA technique optimizes features by minimizing data redundancy. A comprehensive experimentation including the well-established emotion datasets: DEAP and AMIGOS, assesses the efficacy of the hybrid stacked GRU and RNN architecture in contrast to 1D convolution neural network, RNN and GRU models. Moreover, the “Hyperopt” technique fine-tunes the model’s hyperparameter, improving the average accuracy by about 3.73%. Hence, results revealed that the hybrid GRU-RNN model demonstrates the most optimal performance with the highest classification accuracies of 99.77% ± 0.13, 99.54% ± 0.16, 99.82% ± 0.14, and 99.68% ± 0.13 for the 3D VAD and liking parameter, respectively. Furthermore, the model’s generalizability is examined using the cross-subject and database analysis on the DEAP and AMIGOS datasets, exhibiting a classification with an average accuracy of about 99.75% ± 0.10 and 99.97% ± 0.03. Obtained results when compared with the existing methods in literature demonstrate superior performance, highlighting potential in emotion recognition.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.