Franziska Schöniger, Philipp Mascherbauer, Gustav Resch, Lukas Kranzl, Reinhard Haas
{"title":"分散式热泵作为脱碳能源系统灵活性选择的潜力","authors":"Franziska Schöniger, Philipp Mascherbauer, Gustav Resch, Lukas Kranzl, Reinhard Haas","doi":"10.1007/s12053-024-10206-z","DOIUrl":null,"url":null,"abstract":"<div><p>Decarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO<sub>2</sub> emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWh<sub>el</sub> and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"17 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12053-024-10206-z.pdf","citationCount":"0","resultStr":"{\"title\":\"The potential of decentral heat pumps as flexibility option for decarbonised energy systems\",\"authors\":\"Franziska Schöniger, Philipp Mascherbauer, Gustav Resch, Lukas Kranzl, Reinhard Haas\",\"doi\":\"10.1007/s12053-024-10206-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO<sub>2</sub> emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWh<sub>el</sub> and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.</p></div>\",\"PeriodicalId\":537,\"journal\":{\"name\":\"Energy Efficiency\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12053-024-10206-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Efficiency\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12053-024-10206-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-024-10206-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The potential of decentral heat pumps as flexibility option for decarbonised energy systems
Decarbonising the energy system requires high shares of variable renewable generation and sector coupling like power to heat. In addition to heat supply, heat pumps can be used in future energy systems to provide flexibility to the electricity system by using the thermal storage potential of the building stock and buffer tanks to shift electricity demand to hours of high renewable electricity production. Bridging the gap between two methodological approaches, we coupled a detailed building technology operation model and the open-source energy system model Balmorel to evaluate the flexibility potential that decentral heat pumps can provide to the electricity system. Austria in the year 2030 serves as an example of a 100% renewable-based electricity system (at an annual national balance). Results show that system benefits from heat pump flexibility are relatively limited in extent and concentrated on short-term flexibility. Flexible heat pumps reduce system cost, CO2 emissions, and photovoltaics and wind curtailment in all scenarios. The amount of electricity shifted in the assessed standard flexibility scenario is 194 GWhel and accounts for about 20% of the available flexible heat pump electricity demand. A comparison of different modelling approaches and a deterministic sensitivity analysis of key input parameters complement the modelling. The most important input parameters impacting heat pump flexibility are the flexible capacity (determined by installed capacity and share of control), shifting time limitations, and cost assumptions for the flexibility provided. Heat pump flexibility contributes more to increasing low residual loads (up to 22% in the assessed scenarios) than decreasing residual load peaks. Wind power integration benefits more from heat pump flexibility than photovoltaics because of the temporal correlation between heat demand and wind generation.
期刊介绍:
The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.