白桦脂酸通过破坏细胞膜完整性而不涉及 Fcεri 受体增强肥大细胞脱颗粒作用

IF 2.9 4区 医学 Q3 IMMUNOLOGY Immunological Investigations Pub Date : 2024-05-01 Epub Date: 2024-03-19 DOI:10.1080/08820139.2024.2329990
Gouse M Shaik, Mohd Shahnawaz Khan
{"title":"白桦脂酸通过破坏细胞膜完整性而不涉及 Fcεri 受体增强肥大细胞脱颗粒作用","authors":"Gouse M Shaik, Mohd Shahnawaz Khan","doi":"10.1080/08820139.2024.2329990","DOIUrl":null,"url":null,"abstract":"<p><p>Mast cells play important role in acquired and natural immunity making these favorable therapeutic targets in various inflammatory diseases. Here we observed that, pentacyclic tri terpenoid betulinic acid (BA) treatment resulted in a significantly high number (9%) of cells positive for Hoechst and negative for annexin-V indicating that BA could interfere with plasma membrane integrity. The degranulation of both activated and non-activated mast cells was enhanced upon treatment with BA. The pre-treatment of BA had remarkable effect on calcium response in activated mast cells which showed increased calcium influx relative compared to untreated cells. The results also showed potentially less migration of BA treated mast cells signifying the possible effect of BA on cell membrane. BA treatment resulted in a significant increase in mRNA levels of IL-13 while as mRNA levels of other target cytokines, IL-6 and TNF-α seem to be not affected. Moreover, there was global Increase in phosphorylation of signaling proteins and no significant change in phosphorylation of FcεRI receptors indicating that the effect of BA was independent of signaling cascade or FcεRI receptor mediated mast cell aggregation. Overall, these results portray BA potentiates mast cell effector functions by compromising the membrane integrity and independent of FcεRI involvement.</p>","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":" ","pages":"695-711"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betulinic Acid Potentiates Mast Cell Degranulation by Compromising Cell Membrane Integrity and Without Involving Fcεri Receptors.\",\"authors\":\"Gouse M Shaik, Mohd Shahnawaz Khan\",\"doi\":\"10.1080/08820139.2024.2329990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mast cells play important role in acquired and natural immunity making these favorable therapeutic targets in various inflammatory diseases. Here we observed that, pentacyclic tri terpenoid betulinic acid (BA) treatment resulted in a significantly high number (9%) of cells positive for Hoechst and negative for annexin-V indicating that BA could interfere with plasma membrane integrity. The degranulation of both activated and non-activated mast cells was enhanced upon treatment with BA. The pre-treatment of BA had remarkable effect on calcium response in activated mast cells which showed increased calcium influx relative compared to untreated cells. The results also showed potentially less migration of BA treated mast cells signifying the possible effect of BA on cell membrane. BA treatment resulted in a significant increase in mRNA levels of IL-13 while as mRNA levels of other target cytokines, IL-6 and TNF-α seem to be not affected. Moreover, there was global Increase in phosphorylation of signaling proteins and no significant change in phosphorylation of FcεRI receptors indicating that the effect of BA was independent of signaling cascade or FcεRI receptor mediated mast cell aggregation. Overall, these results portray BA potentiates mast cell effector functions by compromising the membrane integrity and independent of FcεRI involvement.</p>\",\"PeriodicalId\":13387,\"journal\":{\"name\":\"Immunological Investigations\",\"volume\":\" \",\"pages\":\"695-711\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820139.2024.2329990\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2024.2329990","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥大细胞在获得性免疫和天然免疫中发挥着重要作用,是各种炎症性疾病的有利治疗靶点。在这里,我们观察到,五环三萜类化合物白桦脂酸(BA)处理后,大量细胞(9%)出现 Hoechst 阳性和 annexin-V 阴性,这表明白桦脂酸可干扰质膜的完整性。经 BA 处理后,活化和非活化肥大细胞的脱颗粒功能都增强了。BA 的预处理对活化肥大细胞的钙反应有显著影响,与未处理的细胞相比,活化肥大细胞的钙流入量增加。结果还显示,经 BA 处理的肥大细胞的迁移可能会减少,这表明 BA 可能对细胞膜有影响。BA 处理导致 IL-13 的 mRNA 水平明显增加,而其他目标细胞因子、IL-6 和 TNF-α 的 mRNA 水平似乎未受影响。此外,信号蛋白的磷酸化出现了全面的增加,而 FcεRI 受体的磷酸化没有明显变化,这表明 BA 的作用独立于信号级联或 FcεRI 受体介导的肥大细胞聚集。总之,这些结果表明,BA 通过损害膜完整性而增强肥大细胞效应功能,与 FcεRI 的参与无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Betulinic Acid Potentiates Mast Cell Degranulation by Compromising Cell Membrane Integrity and Without Involving Fcεri Receptors.

Mast cells play important role in acquired and natural immunity making these favorable therapeutic targets in various inflammatory diseases. Here we observed that, pentacyclic tri terpenoid betulinic acid (BA) treatment resulted in a significantly high number (9%) of cells positive for Hoechst and negative for annexin-V indicating that BA could interfere with plasma membrane integrity. The degranulation of both activated and non-activated mast cells was enhanced upon treatment with BA. The pre-treatment of BA had remarkable effect on calcium response in activated mast cells which showed increased calcium influx relative compared to untreated cells. The results also showed potentially less migration of BA treated mast cells signifying the possible effect of BA on cell membrane. BA treatment resulted in a significant increase in mRNA levels of IL-13 while as mRNA levels of other target cytokines, IL-6 and TNF-α seem to be not affected. Moreover, there was global Increase in phosphorylation of signaling proteins and no significant change in phosphorylation of FcεRI receptors indicating that the effect of BA was independent of signaling cascade or FcεRI receptor mediated mast cell aggregation. Overall, these results portray BA potentiates mast cell effector functions by compromising the membrane integrity and independent of FcεRI involvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunological Investigations
Immunological Investigations 医学-免疫学
CiteScore
5.50
自引率
7.10%
发文量
49
审稿时长
3 months
期刊介绍: Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.
期刊最新文献
Differential Expression of Granulysin, MHC Class I-Related Chain A, and Perforin in Serum and Peritoneal Fluid: Immune Dysregulation in Endometriosis-Related Infertility. Serum-Derived Exosomal TBX2-AS1 Exacerbates COPD by Altering the M1/M2 Ratio of Macrophages through Regulating the miR-423-5p/miR-23b-3p Axis. Evaluation of the Immunoadjuvant Effects of miR-155-Chitosan Polyplex on Leishmania major Infected Mice. Combination Effect of Radiotherapy and Targeted Therapy with NK Cell-Based Immunotherapy in head and Neck Squamous Cell Carcinoma. NOD1 Agonist Induces Proliferation and Plasma Cell Differentiation of Mouse B Cells Especially CD23high B Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1