Sarah R Fausett, Caroline A Laury, Rachel E Magallon, Christian Braendle
{"title":"线虫 Caenorhabditis elegans 中作为生殖干细胞生态位活动指标的祖细胞区大小的简化定量。","authors":"Sarah R Fausett, Caroline A Laury, Rachel E Magallon, Christian Braendle","doi":"10.1007/7651_2024_536","DOIUrl":null,"url":null,"abstract":"<p><p>Germ stem cell (GSC) niches are fundamental for the maintenance of the immortal germ cell lineage across generations. In the nematode Caenorhabditis elegans, the simple GSC system has served as an important model for understanding stem cell biology and underlying genetic architecture. GSC niche activity in C. elegans is highly sensitive to subtle environmental and genetic variation. Quantifying variation in the C. elegans GSC niche is therefore essential; however, most methods to do so remain labor-intensive and time-consuming when screening large numbers of individuals. Here, we present a simple and efficient method to estimate the size of the C. elegans GSC niche progenitor pool. This method is ideal for detecting differences in progenitor pool size among different genotypes and environmental treatments during medium- to high-throughput applications such as forward genetic screens and quantitative genetics.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Quantification of Progenitor Zone Size, an Indicator of Germ Stem Cell Niche Activity, in the Nematode Caenorhabditis elegans.\",\"authors\":\"Sarah R Fausett, Caroline A Laury, Rachel E Magallon, Christian Braendle\",\"doi\":\"10.1007/7651_2024_536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Germ stem cell (GSC) niches are fundamental for the maintenance of the immortal germ cell lineage across generations. In the nematode Caenorhabditis elegans, the simple GSC system has served as an important model for understanding stem cell biology and underlying genetic architecture. GSC niche activity in C. elegans is highly sensitive to subtle environmental and genetic variation. Quantifying variation in the C. elegans GSC niche is therefore essential; however, most methods to do so remain labor-intensive and time-consuming when screening large numbers of individuals. Here, we present a simple and efficient method to estimate the size of the C. elegans GSC niche progenitor pool. This method is ideal for detecting differences in progenitor pool size among different genotypes and environmental treatments during medium- to high-throughput applications such as forward genetic screens and quantitative genetics.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Simplified Quantification of Progenitor Zone Size, an Indicator of Germ Stem Cell Niche Activity, in the Nematode Caenorhabditis elegans.
Germ stem cell (GSC) niches are fundamental for the maintenance of the immortal germ cell lineage across generations. In the nematode Caenorhabditis elegans, the simple GSC system has served as an important model for understanding stem cell biology and underlying genetic architecture. GSC niche activity in C. elegans is highly sensitive to subtle environmental and genetic variation. Quantifying variation in the C. elegans GSC niche is therefore essential; however, most methods to do so remain labor-intensive and time-consuming when screening large numbers of individuals. Here, we present a simple and efficient method to estimate the size of the C. elegans GSC niche progenitor pool. This method is ideal for detecting differences in progenitor pool size among different genotypes and environmental treatments during medium- to high-throughput applications such as forward genetic screens and quantitative genetics.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.