{"title":"机器学习预测羊群对多种驱虫药的抗药性和胃肠道线虫控制。","authors":"Simone Cristina Méo Niciura, Guilherme Martineli Sanches","doi":"10.1590/S1984-29612024014","DOIUrl":null,"url":null,"abstract":"<p><p>The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.</p>","PeriodicalId":48990,"journal":{"name":"Revista Brasileira De Parasitologia Veterinaria","volume":"33 1","pages":"e019023"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks.\",\"authors\":\"Simone Cristina Méo Niciura, Guilherme Martineli Sanches\",\"doi\":\"10.1590/S1984-29612024014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.</p>\",\"PeriodicalId\":48990,\"journal\":{\"name\":\"Revista Brasileira De Parasitologia Veterinaria\",\"volume\":\"33 1\",\"pages\":\"e019023\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Parasitologia Veterinaria\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/S1984-29612024014\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Parasitologia Veterinaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/S1984-29612024014","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Veterinary","Score":null,"Total":0}
Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks.
The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.
期刊介绍:
La revista es un órgano de difusión del Colegio Brasileño de Parasitología Veterinaria, con una especificidad dentro de esa área, la difusión de los resultados de la investigación brasileña en las áreas de Helmintología, Protozoología, Entomología y agentes transmitidos por artrópodos, relacionados con la salud animal.