机器学习预测羊群对多种驱虫药的抗药性和胃肠道线虫控制。

IF 1.3 4区 农林科学 Q2 Veterinary Revista Brasileira De Parasitologia Veterinaria Pub Date : 2024-03-18 eCollection Date: 2024-01-01 DOI:10.1590/S1984-29612024014
Simone Cristina Méo Niciura, Guilherme Martineli Sanches
{"title":"机器学习预测羊群对多种驱虫药的抗药性和胃肠道线虫控制。","authors":"Simone Cristina Méo Niciura, Guilherme Martineli Sanches","doi":"10.1590/S1984-29612024014","DOIUrl":null,"url":null,"abstract":"<p><p>The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.</p>","PeriodicalId":48990,"journal":{"name":"Revista Brasileira De Parasitologia Veterinaria","volume":"33 1","pages":"e019023"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks.\",\"authors\":\"Simone Cristina Méo Niciura, Guilherme Martineli Sanches\",\"doi\":\"10.1590/S1984-29612024014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.</p>\",\"PeriodicalId\":48990,\"journal\":{\"name\":\"Revista Brasileira De Parasitologia Veterinaria\",\"volume\":\"33 1\",\"pages\":\"e019023\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Parasitologia Veterinaria\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/S1984-29612024014\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Parasitologia Veterinaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/S1984-29612024014","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 0

摘要

传染性单胞菌(Haemonchus contortus)的高流行率及其抗蠕虫药耐药性影响了全世界的绵羊生产。机器学习方法能够研究抗药性相关因素之间的复杂关系。我们建立了分类树,从 27 个羊群的 36 种管理方法中预测多种药物的抗药性。使用粪便虫卵计数减少试验(FECRT)评估对五种抗蠕虫药的抗药性,20 个羊群的四种或五种抗蠕虫药的粪便虫卵计数减少试验(FECRT)小于 80%,则被认为具有抗药性。数据被随机分成训练集(75%)和测试集(25%),重采样 1,000 次,并为训练数据生成分类树。在 1,000 棵树中,有 24 棵树(2.4%)在预测测试数据中的羊群是抗性还是易感性方面显示出 100% 的准确性、灵敏度和特异性。饲草种类是所有 24 棵树的共同特征,最常见的树(12/24)是按饲草种类、放牧草场面积和粪便检查划分的。养殖系统、萨福克绵羊品种和抗蠕虫药选择标准是其他树中突出的做法。这些管理方法可用于预测抗蠕虫药的抗药性状况,并指导羊群的胃肠道线虫控制措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks.

The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira De Parasitologia Veterinaria
Revista Brasileira De Parasitologia Veterinaria PARASITOLOGY-VETERINARY SCIENCES
CiteScore
2.60
自引率
7.70%
发文量
90
审稿时长
>12 weeks
期刊介绍: La revista es un órgano de difusión del Colegio Brasileño de Parasitología Veterinaria, con una especificidad dentro de esa área, la difusión de los resultados de la investigación brasileña en las áreas de Helmintología, Protozoología, Entomología y agentes transmitidos por artrópodos, relacionados con la salud animal.
期刊最新文献
Anti-Pterobothrium heteracanthum (Trypanorhyncha: Pterobothriidae) IgG in human serum samples. Detection and quantification of Dioctophyme renale eggs in dog urine after nephrectomy. First record of Haematopinus tuberculatus (Burmeister, 1839) (Psocodea: Anoplura: Haematopinidae) parasitizing buffalo (Bubalus bubalis) in the state of Amazonas, Brazil. Gastrointestinal Platyhelminths of Free-Living Cuniculus paca (Linnaeus, 1766) in the Western Amazon. Optimization and workflow of in vitro culture of adult Fasciola hepatica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1