利用蛇形机器人的曲线变换设计 S 形滚动步态,用于在分叉管道上攀爬。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-04-02 DOI:10.1088/1748-3190/ad3601
Jingwen Lu, Chaoquan Tang, Eryi Hu, Zhipeng Li
{"title":"利用蛇形机器人的曲线变换设计 S 形滚动步态,用于在分叉管道上攀爬。","authors":"Jingwen Lu, Chaoquan Tang, Eryi Hu, Zhipeng Li","doi":"10.1088/1748-3190/ad3601","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we focus on overcoming the challenge of a snake robot climbing on the outside of a bifurcated pipe. Inspired by the climbing postures of biological snakes, we propose an S-shaped rolling gait designed using curve transformations. For this gait, the snake robot's body presenting an S-shaped curve is wrapped mainly around one side of the pipe, which leaves space for the fork of the pipe. To overcome the difficulty in constructing and clarifying the S-shaped curve, we present a method for establishing the transformation between a plane curve and a 3D curve on a cylindrical surface. Therefore, we can intuitively design the curve in 3D space, while analytically calculating the geometric properties of the curve in simple planar coordinate systems. The effectiveness of the proposed gait is verified by actual experiments. In successful configuration scenarios, the snake robot could stably climb on the pipe and efficiently cross or climb to the bifurcation while maintaining its target shape.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe.\",\"authors\":\"Jingwen Lu, Chaoquan Tang, Eryi Hu, Zhipeng Li\",\"doi\":\"10.1088/1748-3190/ad3601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we focus on overcoming the challenge of a snake robot climbing on the outside of a bifurcated pipe. Inspired by the climbing postures of biological snakes, we propose an S-shaped rolling gait designed using curve transformations. For this gait, the snake robot's body presenting an S-shaped curve is wrapped mainly around one side of the pipe, which leaves space for the fork of the pipe. To overcome the difficulty in constructing and clarifying the S-shaped curve, we present a method for establishing the transformation between a plane curve and a 3D curve on a cylindrical surface. Therefore, we can intuitively design the curve in 3D space, while analytically calculating the geometric properties of the curve in simple planar coordinate systems. The effectiveness of the proposed gait is verified by actual experiments. In successful configuration scenarios, the snake robot could stably climb on the pipe and efficiently cross or climb to the bifurcation while maintaining its target shape.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad3601\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3601","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们重点攻克了蛇形机器人在分叉管道外侧攀爬的难题。受生物蛇类攀爬姿态的启发,我们提出了一种利用曲线变换设计的 S 形滚动步态。在这种步态下,蛇形机器人的身体呈现 S 形曲线,主要缠绕在管道的一侧,为管道的分叉留出空间。为了克服构建和明确 S 形曲线的困难,我们提出了一种在圆柱面上建立平面曲线和三维曲线之间变换的方法。因此,我们可以在三维空间中直观地设计曲线,同时在简单的平面坐标系中分析计算曲线的几何特性。实际实验验证了拟议步态的有效性。在成功的配置方案中,蛇形机器人可以稳定地在管道上攀爬,并在保持目标形状的情况下有效地穿过或爬到分叉处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe.

In this work, we focus on overcoming the challenge of a snake robot climbing on the outside of a bifurcated pipe. Inspired by the climbing postures of biological snakes, we propose an S-shaped rolling gait designed using curve transformations. For this gait, the snake robot's body presenting an S-shaped curve is wrapped mainly around one side of the pipe, which leaves space for the fork of the pipe. To overcome the difficulty in constructing and clarifying the S-shaped curve, we present a method for establishing the transformation between a plane curve and a 3D curve on a cylindrical surface. Therefore, we can intuitively design the curve in 3D space, while analytically calculating the geometric properties of the curve in simple planar coordinate systems. The effectiveness of the proposed gait is verified by actual experiments. In successful configuration scenarios, the snake robot could stably climb on the pipe and efficiently cross or climb to the bifurcation while maintaining its target shape.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Vertical bending and aerodynamic performance in flying snake-inspired aerial undulation. Effects of maximum thickness position on hydrodynamic performance for fish-like swimmers. Optimization of a passive roll absorber for robotic fish based on tune mass damper. Reproducing the caress gesture with an anthropomorphic robot: a feasibility study. Stability and agility trade-offs in spring-wing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1