结合软机器人技术和远程康复技术,改善中风后的运动功能。

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2024-01-26 eCollection Date: 2024-01-01 DOI:10.1017/wtc.2023.26
Tommaso Proietti, Kristin Nuckols, Jesse Grupper, Diogo Schwerz de Lucena, Bianca Inirio, Kelley Porazinski, Diana Wagner, Tazzy Cole, Christina Glover, Sarah Mendelowitz, Maxwell Herman, Joan Breen, David Lin, Conor Walsh
{"title":"结合软机器人技术和远程康复技术,改善中风后的运动功能。","authors":"Tommaso Proietti, Kristin Nuckols, Jesse Grupper, Diogo Schwerz de Lucena, Bianca Inirio, Kelley Porazinski, Diana Wagner, Tazzy Cole, Christina Glover, Sarah Mendelowitz, Maxwell Herman, Joan Breen, David Lin, Conor Walsh","doi":"10.1017/wtc.2023.26","DOIUrl":null,"url":null,"abstract":"<p><p>Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, <i>p</i> < .05, COPM-P + 2.5 ± 1.3, <i>p</i> < .05, COPM-S + 2.6 ± 1.9, <i>p</i> < .05, MAL-AOU +6.6 ± 6.5, <i>p</i> < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e1"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining soft robotics and telerehabilitation for improving motor function after stroke.\",\"authors\":\"Tommaso Proietti, Kristin Nuckols, Jesse Grupper, Diogo Schwerz de Lucena, Bianca Inirio, Kelley Porazinski, Diana Wagner, Tazzy Cole, Christina Glover, Sarah Mendelowitz, Maxwell Herman, Joan Breen, David Lin, Conor Walsh\",\"doi\":\"10.1017/wtc.2023.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, <i>p</i> < .05, COPM-P + 2.5 ± 1.3, <i>p</i> < .05, COPM-S + 2.6 ± 1.9, <i>p</i> < .05, MAL-AOU +6.6 ± 6.5, <i>p</i> < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":\"5 \",\"pages\":\"e1\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2023.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

远程康复和机器人技术(无论是传统的刚性技术还是软性技术)已被广泛研究和用于改善中风后的手部功能。然而,将这两项技术结合到一起的设备数量有限,且成熟度不高,无法在患者家中无人监督的情况下使用。在这里,我们展示了一项新颖的研究,证明了将软质充气机器人手套、云连接软件界面和远程康复疗法整合在一起的系统的可行性。十名中度至重度中风的慢性病患者在家中独立使用了该系统 4 周,接受软件指导的治疗,并与职业治疗师保持联系。由于系统具有云连接功能,职业治疗师可以实时获得治疗数据,包括机器人的自动评估。参与者集中使用了该系统(每次治疗的动作是标准治疗的五倍),平均治疗时间超过 8 小时。我们能够观察到标准临床指标的改善(FMA +3.9 ± 4.0,p p p p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining soft robotics and telerehabilitation for improving motor function after stroke.

Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, p < .05, COPM-P + 2.5 ± 1.3, p < .05, COPM-S + 2.6 ± 1.9, p < .05, MAL-AOU +6.6 ± 6.5, p < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
A muscle synergies-based controller to drive a powered upper-limb exoskeleton in reaching tasks. A wearable gait lab powered by sensor-driven digital twins for quantitative biomechanical analysis post-stroke. Design, modeling, and preliminary evaluation of a 3D-printed wrist-hand grasping orthosis for stroke survivors. Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1