{"title":"分析登革热流行病模型单延迟微分方程的动力学和稳定性","authors":"A. Venkatesh , M. Prakash Raj , B. Baranidharan","doi":"10.1016/j.rico.2024.100415","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a mathematical model that simulates the transmission of the dengue virus in a population over time. The model takes into account aspects such as delays in transmission, the impact of inhibitory effects, the loss of immunity, and the presence of partial immunity. The model has been verified to ensure the positivity and boundedness. The basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model is derived using the advanced next-generation matrix approach. An analysis is conducted on the stability criteria of the model, and equilibrium points are investigated. Under appropriate circumstances, it was shown that there is local stability in both the virus-free equilibrium and the endemic equilibrium points when there is a delay. Analyzing the global asymptotic stability of equilibrium points is done by using the appropriate Lyapunov function. In addition, the model exhibits a backward bifurcation, in which the virus-free equilibrium coexists with a stable endemic equilibrium. By using a sensitivity analysis technique, it has been shown that some factors have a substantial influence on the behavior of the model. The research adeptly elucidates the ramifications of its results by effortlessly validating theoretical concepts with numerical examples and simulations. Furthermore, our research revealed that augmenting the rate of inhibition on infected vectors and people leads to a reduction in the equilibrium point, suggesting the presence of an endemic state.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100415"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000456/pdfft?md5=88b17fd17f2c37e40163ab7bec62e33b&pid=1-s2.0-S2666720724000456-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analyzing dynamics and stability of single delay differential equations for the dengue epidemic model\",\"authors\":\"A. Venkatesh , M. Prakash Raj , B. Baranidharan\",\"doi\":\"10.1016/j.rico.2024.100415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a mathematical model that simulates the transmission of the dengue virus in a population over time. The model takes into account aspects such as delays in transmission, the impact of inhibitory effects, the loss of immunity, and the presence of partial immunity. The model has been verified to ensure the positivity and boundedness. The basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> of the model is derived using the advanced next-generation matrix approach. An analysis is conducted on the stability criteria of the model, and equilibrium points are investigated. Under appropriate circumstances, it was shown that there is local stability in both the virus-free equilibrium and the endemic equilibrium points when there is a delay. Analyzing the global asymptotic stability of equilibrium points is done by using the appropriate Lyapunov function. In addition, the model exhibits a backward bifurcation, in which the virus-free equilibrium coexists with a stable endemic equilibrium. By using a sensitivity analysis technique, it has been shown that some factors have a substantial influence on the behavior of the model. The research adeptly elucidates the ramifications of its results by effortlessly validating theoretical concepts with numerical examples and simulations. Furthermore, our research revealed that augmenting the rate of inhibition on infected vectors and people leads to a reduction in the equilibrium point, suggesting the presence of an endemic state.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"15 \",\"pages\":\"Article 100415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000456/pdfft?md5=88b17fd17f2c37e40163ab7bec62e33b&pid=1-s2.0-S2666720724000456-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Analyzing dynamics and stability of single delay differential equations for the dengue epidemic model
This paper introduces a mathematical model that simulates the transmission of the dengue virus in a population over time. The model takes into account aspects such as delays in transmission, the impact of inhibitory effects, the loss of immunity, and the presence of partial immunity. The model has been verified to ensure the positivity and boundedness. The basic reproduction number of the model is derived using the advanced next-generation matrix approach. An analysis is conducted on the stability criteria of the model, and equilibrium points are investigated. Under appropriate circumstances, it was shown that there is local stability in both the virus-free equilibrium and the endemic equilibrium points when there is a delay. Analyzing the global asymptotic stability of equilibrium points is done by using the appropriate Lyapunov function. In addition, the model exhibits a backward bifurcation, in which the virus-free equilibrium coexists with a stable endemic equilibrium. By using a sensitivity analysis technique, it has been shown that some factors have a substantial influence on the behavior of the model. The research adeptly elucidates the ramifications of its results by effortlessly validating theoretical concepts with numerical examples and simulations. Furthermore, our research revealed that augmenting the rate of inhibition on infected vectors and people leads to a reduction in the equilibrium point, suggesting the presence of an endemic state.