佛罗里达海草的非目标脂质组学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-18 DOI:10.1016/j.aquabot.2024.103773
Emily K. Griffin , Kaylie Anne Costa , Dylan Lukacsa , Justin Greenberg , Lauren M. Hall , Bradley T. Furman , Victoria M. Congdon , Trisha Green , Katherine Suchanec , John A. Bowden
{"title":"佛罗里达海草的非目标脂质组学","authors":"Emily K. Griffin ,&nbsp;Kaylie Anne Costa ,&nbsp;Dylan Lukacsa ,&nbsp;Justin Greenberg ,&nbsp;Lauren M. Hall ,&nbsp;Bradley T. Furman ,&nbsp;Victoria M. Congdon ,&nbsp;Trisha Green ,&nbsp;Katherine Suchanec ,&nbsp;John A. Bowden","doi":"10.1016/j.aquabot.2024.103773","DOIUrl":null,"url":null,"abstract":"<div><p>Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nontargeted lipidomics of Florida seagrasses\",\"authors\":\"Emily K. Griffin ,&nbsp;Kaylie Anne Costa ,&nbsp;Dylan Lukacsa ,&nbsp;Justin Greenberg ,&nbsp;Lauren M. Hall ,&nbsp;Bradley T. Furman ,&nbsp;Victoria M. Congdon ,&nbsp;Trisha Green ,&nbsp;Katherine Suchanec ,&nbsp;John A. Bowden\",\"doi\":\"10.1016/j.aquabot.2024.103773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000251\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海草是世界上最富饶的基础物种之一,对维持生态系统的平衡非常重要。然而,部分由于环境压力,海草的面积在全球范围内不断减少。尽管海草在不断减少,但人们对大多数海草物种的脂质体却知之甚少。一般来说,脂质体特征与表型变化密切相关,可用于评估个体的状况。在本研究中,利用高效液相色谱串联质谱的非靶向脂质组学方法,对佛罗里达州野生海草的脂质组进行了评估。在所有标本中,共鉴定出 399 种脂质,包括 33 个脂质亚类。总浓度最高的脂质类别是:单半乳糖基二乙酰甘油(MGDG)、二半乳糖基二乙酰甘油(DGDG)和磺基喹诺酮基二乙酰甘油(SQDG),占所有海草中鉴定出的脂质总量的 75%。在这里,我们首次确定了野生海草的脂质组图谱,这是利用脂质组学作为前瞻性状况评估工具的必要一步。一旦绘制了区域和特定物种的基线图,脂质组学调查就能为环境压力因素对海草状况的影响提供新的见解,并有助于加强目前记录和了解海草生态系统状况和趋势的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nontargeted lipidomics of Florida seagrasses

Seagrasses are one of the most productive foundation species in the world and are important for maintaining ecosystem homeostasis. However, seagrasses have experienced a global decline in areal extent, due in part to environmental stressors. Despite ongoing decline, little is known about the lipidome of most seagrass species. Generally, lipidome profiles closely align with phenotypic changes and can be used to evaluate the condition of an individual. In this study, a nontargeted lipidomics approach, utilizing high-performance liquid chromatography tandem mass spectrometry, was used to assess the lipidome of wild seagrasses in Florida. Overall, 399 individual lipid species, comprised of 33 lipid subclasses, were identified across all specimens. The lipid classes with the highest total concentration, accounting for 75% of total identified lipids in all seagrasses were: monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). Here, the lipidomic profiles of wild seagrasses were identified for the first time, a necessary step toward using lipodomics as a tool for prospective assessments of condition. Once regional and species-specific baselines have been mapped, lipodomic surveys could provide new insight into the effects of environmental stressors on seagrass condition and help to augment ongoing efforts to document and understand seagrass ecosystem status and trends.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1