Jihyun Park , Guebuem Kim , Tae-Hoon Kim , TaeKeun Rho , Purena Son
{"title":"追踪韩国济州岛沿海海水中与海底地下水排放有关的不同硝酸盐来源的贡献","authors":"Jihyun Park , Guebuem Kim , Tae-Hoon Kim , TaeKeun Rho , Purena Son","doi":"10.1016/j.marchem.2024.104382","DOIUrl":null,"url":null,"abstract":"<div><p>We measured the concentrations of dissolved inorganic nutrients and the dual isotopic composition of nitrate (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup> and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>) in coastal waters off Jeju, a volcanic island in Korea, to trace its main sources. Sampling of seawater and fresh groundwater was conducted in four different coastal areas of Jeju Island: Haengwon (HW), Pyoseon (PS), Ilgwa (IG), and Sagye (SG) in May 2020 and 2021. The significant negative correlations between NO<sub>3</sub><sup>−</sup> and salinity in the four areas indicate that the main source of NO<sub>3</sub><sup>−</sup> is fresh submarine groundwater discharge (FSGD), with the extrapolated fresh groundwater endmember values ranging from 170 to 300 μM (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup>: 4.1–10.8 and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>: 1.7–6.4). The actual sources of SGD-driven NO<sub>3</sub><sup>−</sup> in these coastal waters were determined using a bi-plot diagram (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup> vs. δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>) and a Bayesian stable isotope mixing model (MixSIAR). The results showed that, besides the background contribution from open-ocean waters, the main sources of NO<sub>3</sub><sup>−</sup> in HW were fertilizer (69 ± 5%) and manure and sewage (24 ± 7%) and those in PS, IG, and SG were manure and sewage (PS: 53 ± 11%, IG: 57 ± 12%, SG: 63 ± 13%) and fertilizer (PS: 27 ± 8%, IG: 24 ± 5%, SG: 22 ± 5%). Our extrapolation approach for NO<sub>3</sub><sup>−</sup> dual isotopes provides a better way to evaluate the main sources of NO<sub>3</sub><sup>−</sup> in coastal waters off volcanic islands where SGD-driven NO<sub>3</sub><sup>−</sup> is significant, but its actual source groundwater cannot be located.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"261 ","pages":"Article 104382"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing the contributions of different nitrate sources associated with submarine groundwater discharge in coastal seawaters off Jeju Island, Korea\",\"authors\":\"Jihyun Park , Guebuem Kim , Tae-Hoon Kim , TaeKeun Rho , Purena Son\",\"doi\":\"10.1016/j.marchem.2024.104382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We measured the concentrations of dissolved inorganic nutrients and the dual isotopic composition of nitrate (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup> and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>) in coastal waters off Jeju, a volcanic island in Korea, to trace its main sources. Sampling of seawater and fresh groundwater was conducted in four different coastal areas of Jeju Island: Haengwon (HW), Pyoseon (PS), Ilgwa (IG), and Sagye (SG) in May 2020 and 2021. The significant negative correlations between NO<sub>3</sub><sup>−</sup> and salinity in the four areas indicate that the main source of NO<sub>3</sub><sup>−</sup> is fresh submarine groundwater discharge (FSGD), with the extrapolated fresh groundwater endmember values ranging from 170 to 300 μM (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup>: 4.1–10.8 and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>: 1.7–6.4). The actual sources of SGD-driven NO<sub>3</sub><sup>−</sup> in these coastal waters were determined using a bi-plot diagram (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup> vs. δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>) and a Bayesian stable isotope mixing model (MixSIAR). The results showed that, besides the background contribution from open-ocean waters, the main sources of NO<sub>3</sub><sup>−</sup> in HW were fertilizer (69 ± 5%) and manure and sewage (24 ± 7%) and those in PS, IG, and SG were manure and sewage (PS: 53 ± 11%, IG: 57 ± 12%, SG: 63 ± 13%) and fertilizer (PS: 27 ± 8%, IG: 24 ± 5%, SG: 22 ± 5%). Our extrapolation approach for NO<sub>3</sub><sup>−</sup> dual isotopes provides a better way to evaluate the main sources of NO<sub>3</sub><sup>−</sup> in coastal waters off volcanic islands where SGD-driven NO<sub>3</sub><sup>−</sup> is significant, but its actual source groundwater cannot be located.</p></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"261 \",\"pages\":\"Article 104382\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420324000331\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420324000331","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tracing the contributions of different nitrate sources associated with submarine groundwater discharge in coastal seawaters off Jeju Island, Korea
We measured the concentrations of dissolved inorganic nutrients and the dual isotopic composition of nitrate (δ15N-NO3− and δ18O-NO3−) in coastal waters off Jeju, a volcanic island in Korea, to trace its main sources. Sampling of seawater and fresh groundwater was conducted in four different coastal areas of Jeju Island: Haengwon (HW), Pyoseon (PS), Ilgwa (IG), and Sagye (SG) in May 2020 and 2021. The significant negative correlations between NO3− and salinity in the four areas indicate that the main source of NO3− is fresh submarine groundwater discharge (FSGD), with the extrapolated fresh groundwater endmember values ranging from 170 to 300 μM (δ15N-NO3−: 4.1–10.8 and δ18O-NO3−: 1.7–6.4). The actual sources of SGD-driven NO3− in these coastal waters were determined using a bi-plot diagram (δ15N-NO3− vs. δ18O-NO3−) and a Bayesian stable isotope mixing model (MixSIAR). The results showed that, besides the background contribution from open-ocean waters, the main sources of NO3− in HW were fertilizer (69 ± 5%) and manure and sewage (24 ± 7%) and those in PS, IG, and SG were manure and sewage (PS: 53 ± 11%, IG: 57 ± 12%, SG: 63 ± 13%) and fertilizer (PS: 27 ± 8%, IG: 24 ± 5%, SG: 22 ± 5%). Our extrapolation approach for NO3− dual isotopes provides a better way to evaluate the main sources of NO3− in coastal waters off volcanic islands where SGD-driven NO3− is significant, but its actual source groundwater cannot be located.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.