{"title":"C4 磷酸烯醇丙酮酸羧化酶:进化与转录调控","authors":"Pedro Carvalho, Célia Gomes, Nelson J M Saibo","doi":"10.1590/1678-4685-GMB-2023-0190","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958771/pdf/","citationCount":"0","resultStr":"{\"title\":\"C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation.\",\"authors\":\"Pedro Carvalho, Célia Gomes, Nelson J M Saibo\",\"doi\":\"10.1590/1678-4685-GMB-2023-0190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-4685-GMB-2023-0190\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0190","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
C4 Phosphoenolpyruvate Carboxylase: Evolution and transcriptional regulation.
Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.