与 CD4+ 调节性 T 细胞相比,抗体抑制性 CXCR5+CD8+ T 细胞是小鼠肾移植后体液异体免疫的更有效调节因子。

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2024-05-01 DOI:10.4049/jimmunol.2300289
Jing L Han, Jason M Zimmerer, Qiang Zeng, Sachi Chaudhari, Anjali Satoskar, Mahmoud Abdel-Rasoul, Hope Uwase, Christopher K Breuer, Ginny L Bumgardner
{"title":"与 CD4+ 调节性 T 细胞相比,抗体抑制性 CXCR5+CD8+ T 细胞是小鼠肾移植后体液异体免疫的更有效调节因子。","authors":"Jing L Han, Jason M Zimmerer, Qiang Zeng, Sachi Chaudhari, Anjali Satoskar, Mahmoud Abdel-Rasoul, Hope Uwase, Christopher K Breuer, Ginny L Bumgardner","doi":"10.4049/jimmunol.2300289","DOIUrl":null,"url":null,"abstract":"<p><p>Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047759/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells.\",\"authors\":\"Jing L Han, Jason M Zimmerer, Qiang Zeng, Sachi Chaudhari, Anjali Satoskar, Mahmoud Abdel-Rasoul, Hope Uwase, Christopher K Breuer, Ginny L Bumgardner\",\"doi\":\"10.4049/jimmunol.2300289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047759/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4049/jimmunol.2300289\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2300289","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用细胞疗法(ACT),尤其是采用 CD4+ 调节性 T 细胞(CD4+ Tregs),是一种新兴的治疗策略,可最大限度地减少免疫抑制,促进长期异体移植的接受,但要实现其潜力仍有许多研究工作要做。在这项研究中,我们研究了新型抗体抑制因子 CXCR5+CD8+ T 细胞(CD8+ TAb-supp)与传统的 CD25highFoxp3+CD4+ Tregs 相比在抗体介导的排斥反应(AMR)小鼠肾移植(KTx)模型中抑制体液异体免疫的有效性。我们检测了 KTx 受者的外周血、脾脏和移植物浸润的 CD8+ TAb-supp 以及 CD4+ Tregs 的数量,发现与野生型 KTx 受者相比,产生高异体抗体的 CCR5 基因敲除 KTx 受者移植后的外周血和脾脏 CD8+ TAb-supp 以及脾脏和移植物浸润的 CD4+ Tregs 明显较少。使用异源 CXCR5+CD8+ T 细胞的 ACT 降低了异体抗体滴度、脾脏异源生殖中心 (GC) B 细胞数量,并改善了 CCR5 基因敲除 KTx 受体的 AMR 组织学。使用异源 CD4+ Treg 细胞进行 ACT 可改善 AMR 组织学,但不会明显抑制异体抗体的产生或脾脏异源生殖中心 B 细胞的数量。对 TCR 转基因小鼠的研究证实了 CD8+ TAb 支持介导的效应器功能的 Ag 特异性。在野生型受体中,与同种型处理的对照组相比,CD8耗竭会显著增加异体抗体滴度、GC B细胞和AMR病理学的严重程度。抗 CD25 mAb 治疗也会增加异体抗体滴度、GC B 细胞数量和 AMR 病理变化,但其影响不如 CD8 清除那么明显。据我们所知,这是首次报道 CD8+ TAb-supp 细胞比 CD4+ Treg 细胞对体液同种免疫的调节作用更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells.

Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
Immunometabolic Mechanisms of LANCL2 in CD4+ T Cells and Phagocytes Provide Protection from Systemic Lupus Erythematosus. C1q/MASP Complexes-Hybrid Complexes of Classical and Lectin Pathway Proteins Are Found in the Circulation. Rapid Autopsy to Define Dendritic Cell Spatial Distribution and T Cell Association in Lung Adenocarcinoma. Cutting Edge: Retinoic Acid Promotes Brain-homing of CD8+ T Cells during Congenital Cytomegalovirus Infection. A Chimeric IL-7Rα/IL-2Rβ Receptor Promotes the Differentiation of T Cell Progenitors into B Cells and Type 2 Innate Lymphoid Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1