胆总管结扎大鼠心脏中 Cx43 表达减少可通过激活 AMPK-mTOR-ULK1 信号通路诱导自噬

IF 2.7 3区 医学 Q2 CRITICAL CARE MEDICINE SHOCK Pub Date : 2024-09-01 Epub Date: 2024-03-13 DOI:10.1097/SHK.0000000000002360
Xiaoyu Wang, Pingping Liao, He Dong, Aijie Liu, Qian Wang, Han Yang, Xiaolin Xu, Dongyue Chai, Lin Zhu, Lin Lyu
{"title":"胆总管结扎大鼠心脏中 Cx43 表达减少可通过激活 AMPK-mTOR-ULK1 信号通路诱导自噬","authors":"Xiaoyu Wang, Pingping Liao, He Dong, Aijie Liu, Qian Wang, Han Yang, Xiaolin Xu, Dongyue Chai, Lin Zhu, Lin Lyu","doi":"10.1097/SHK.0000000000002360","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Backgrounds: This study aimed to investigate the relationship between Cx43 expression and autophagy mediated by the AMPK-mTOR-Ulk1 signaling pathway in jaundice heart. Methods: In this study, a jaundice model was established in common bile duct ligation (CBDL) rats. Cardiac injury was assessed using various methods including myocardial injury indicators, echocardiography, transmission electron microscopy, hematoxylin and eosin staining, Masson staining, immunohistochemical analyses, and immunofluorescence staining. We investigated the regulatory relationship between Cx43, autophagy, and the AMPK-mTOR-ULK pathway in vivo by administering autophagy agonists (Rapa), autophagy inhibitors (3-MA), and Cx43 inhibitors (Gap 26). In vitro , we observed the relationship between autophagy and the AMPK-mTOR-ULK1 pathway in cells by exposing them to the AMPK inhibitor Compound C and the AMPK activator AICAR. Results: We found that CBDL induced autophagy through the AMPK-mTOR-ULK pathway, leading to the inhibition of myocardial dysfunction. Rapamycin pretreatment with CBDL3d exhibited a protective effect against myocardial injury and promoted autophagy. In contrast, 3-MA had no impact. Pretreatment with rapamycin at CBDL2w enhanced autophagy and aggravated cardiac injury; however, inhibition of autophagy using 3-MA attenuated cardiac injury. Cell viability was enhanced by AMPK inhibitors and inhibited by AMPK agonists. In addition, we observed that increased autophagy led to decreased Cx43 expression, which negatively affected cardiac function. Conclusions: CBDL induces myocardial injury in rats and activates autophagy through the AMPK-mTOR-ULK pathway, resulting in decreased Cx43 protein levels. A moderate increase in early autophagy in CBDL can improve cardiac injury, while late inhibition of autophagy can reduce myocardial injury.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"386-397"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REDUCED CX43 EXPRESSION INDUCES AUTOPHAGY THROUGH ACTIVATION OF THE AMPK-MTOR-ULK1 SIGNALING PATHWAY IN THE COMMON BILE DUCT LIGATION RAT HEART.\",\"authors\":\"Xiaoyu Wang, Pingping Liao, He Dong, Aijie Liu, Qian Wang, Han Yang, Xiaolin Xu, Dongyue Chai, Lin Zhu, Lin Lyu\",\"doi\":\"10.1097/SHK.0000000000002360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Backgrounds: This study aimed to investigate the relationship between Cx43 expression and autophagy mediated by the AMPK-mTOR-Ulk1 signaling pathway in jaundice heart. Methods: In this study, a jaundice model was established in common bile duct ligation (CBDL) rats. Cardiac injury was assessed using various methods including myocardial injury indicators, echocardiography, transmission electron microscopy, hematoxylin and eosin staining, Masson staining, immunohistochemical analyses, and immunofluorescence staining. We investigated the regulatory relationship between Cx43, autophagy, and the AMPK-mTOR-ULK pathway in vivo by administering autophagy agonists (Rapa), autophagy inhibitors (3-MA), and Cx43 inhibitors (Gap 26). In vitro , we observed the relationship between autophagy and the AMPK-mTOR-ULK1 pathway in cells by exposing them to the AMPK inhibitor Compound C and the AMPK activator AICAR. Results: We found that CBDL induced autophagy through the AMPK-mTOR-ULK pathway, leading to the inhibition of myocardial dysfunction. Rapamycin pretreatment with CBDL3d exhibited a protective effect against myocardial injury and promoted autophagy. In contrast, 3-MA had no impact. Pretreatment with rapamycin at CBDL2w enhanced autophagy and aggravated cardiac injury; however, inhibition of autophagy using 3-MA attenuated cardiac injury. Cell viability was enhanced by AMPK inhibitors and inhibited by AMPK agonists. In addition, we observed that increased autophagy led to decreased Cx43 expression, which negatively affected cardiac function. Conclusions: CBDL induces myocardial injury in rats and activates autophagy through the AMPK-mTOR-ULK pathway, resulting in decreased Cx43 protein levels. A moderate increase in early autophagy in CBDL can improve cardiac injury, while late inhibition of autophagy can reduce myocardial injury.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"386-397\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002360\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002360","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在探讨黄疸型心脏中 Cx43 表达与 AMPK-mTOR-Ulk1 信号通路介导的自噬之间的关系:本研究旨在探讨黄疸型心脏中Cx43表达与AMPK-mTOR-Ulk1信号通路介导的自噬之间的关系:方法:本研究在胆总管结扎(CBDL)大鼠中建立了黄疸模型。采用心肌损伤指标、超声心动图、TEM、HE 染色、Masson 染色、IHC 和 IF 等多种方法评估心脏损伤。我们通过使用自噬激动剂(Rapa)、自噬抑制剂(3-MA)和 Cx43 抑制剂(Gap 26),研究了体内 Cx43、自噬和 AMPK-mTOR-ULK 通路之间的调控关系。在体外,我们将细胞暴露于 AMPK 抑制剂化合物 C 和 AMPK 激活剂 AICAR,观察细胞自噬与 AMPK-mTOR-ULK1 通路之间的关系:结果:我们发现 CBDL 可通过 AMPK-mTOR-ULK 通路诱导自噬,从而抑制心肌功能障碍。雷帕霉素预处理 CBDL3d 对心肌损伤有保护作用,并能促进自噬。相比之下,3-MA 则没有影响。雷帕霉素预处理 CBDL2w 可增强自噬作用并加重心脏损伤;然而,使用 3-MA 抑制自噬可减轻心脏损伤。AMPK 抑制剂增强了细胞活力,而 AMPK 激动剂则抑制了细胞活力。此外,我们还观察到自噬增加导致 Cx43 表达减少,从而对心脏功能产生负面影响:CBDL诱导大鼠心肌损伤,并通过AMPK-mTOR-ULK途径激活自噬,导致Cx43蛋白水平下降。在 CBDL 中适度增加早期自噬可改善心脏损伤,而后期抑制自噬可减轻心肌损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REDUCED CX43 EXPRESSION INDUCES AUTOPHAGY THROUGH ACTIVATION OF THE AMPK-MTOR-ULK1 SIGNALING PATHWAY IN THE COMMON BILE DUCT LIGATION RAT HEART.

Abstract: Backgrounds: This study aimed to investigate the relationship between Cx43 expression and autophagy mediated by the AMPK-mTOR-Ulk1 signaling pathway in jaundice heart. Methods: In this study, a jaundice model was established in common bile duct ligation (CBDL) rats. Cardiac injury was assessed using various methods including myocardial injury indicators, echocardiography, transmission electron microscopy, hematoxylin and eosin staining, Masson staining, immunohistochemical analyses, and immunofluorescence staining. We investigated the regulatory relationship between Cx43, autophagy, and the AMPK-mTOR-ULK pathway in vivo by administering autophagy agonists (Rapa), autophagy inhibitors (3-MA), and Cx43 inhibitors (Gap 26). In vitro , we observed the relationship between autophagy and the AMPK-mTOR-ULK1 pathway in cells by exposing them to the AMPK inhibitor Compound C and the AMPK activator AICAR. Results: We found that CBDL induced autophagy through the AMPK-mTOR-ULK pathway, leading to the inhibition of myocardial dysfunction. Rapamycin pretreatment with CBDL3d exhibited a protective effect against myocardial injury and promoted autophagy. In contrast, 3-MA had no impact. Pretreatment with rapamycin at CBDL2w enhanced autophagy and aggravated cardiac injury; however, inhibition of autophagy using 3-MA attenuated cardiac injury. Cell viability was enhanced by AMPK inhibitors and inhibited by AMPK agonists. In addition, we observed that increased autophagy led to decreased Cx43 expression, which negatively affected cardiac function. Conclusions: CBDL induces myocardial injury in rats and activates autophagy through the AMPK-mTOR-ULK pathway, resulting in decreased Cx43 protein levels. A moderate increase in early autophagy in CBDL can improve cardiac injury, while late inhibition of autophagy can reduce myocardial injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SHOCK
SHOCK 医学-外科
CiteScore
6.20
自引率
3.20%
发文量
199
审稿时长
1 months
期刊介绍: SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.
期刊最新文献
Respiratory variation of velocity time integral and peak velocity of left ventricular outflow tract for predicting hypotension after induction of general anesthesia in elderly patients. Circ_0068655 silencing ameliorates hypoxia-induced human cardiomyocyte injury by regulating apoptotic and inflammatory responses. Inhibiting SIRT2 Attenuates Sepsis-Induced Acute Kidney Injury via FOXO1 Acetylation-Mediated Autophagy Activation. Understanding Hemodynamic Incoherence: Mechanisms, Phenotypes, and Implications for Treatment. Fibrinogen-Like Protein 2 Protects the Aggravation of Hypertriglyceridemia on the Severity of Hypertriglyceridemia Acute Pancreatitis by Regulating Macrophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1