{"title":"设计和评估基于肽的癌症疫苗的合成给药配方。","authors":"Kefan Song, Suzie H Pun","doi":"10.34133/bmef.0038","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent advances in neoantigen identification, peptide-based cancer vaccines offer substantial potential in the field of immunotherapy. However, rapid clearance, low immunogenicity, and insufficient antigen-presenting cell (APC) uptake limit the efficacy of peptide-based cancer vaccines. This review explores the barriers hindering vaccine efficiency, highlights recent advancements in synthetic delivery systems, and features strategies for the key delivery steps of lymph node (LN) drainage, APC delivery, cross-presentation strategies, and adjuvant incorporation. This paper also discusses the design of preclinical studies evaluating vaccine efficiency, including vaccine administration routes and murine tumor models.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"5 ","pages":"0038"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and Evaluation of Synthetic Delivery Formulations for Peptide-Based Cancer Vaccines.\",\"authors\":\"Kefan Song, Suzie H Pun\",\"doi\":\"10.34133/bmef.0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the recent advances in neoantigen identification, peptide-based cancer vaccines offer substantial potential in the field of immunotherapy. However, rapid clearance, low immunogenicity, and insufficient antigen-presenting cell (APC) uptake limit the efficacy of peptide-based cancer vaccines. This review explores the barriers hindering vaccine efficiency, highlights recent advancements in synthetic delivery systems, and features strategies for the key delivery steps of lymph node (LN) drainage, APC delivery, cross-presentation strategies, and adjuvant incorporation. This paper also discusses the design of preclinical studies evaluating vaccine efficiency, including vaccine administration routes and murine tumor models.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"5 \",\"pages\":\"0038\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design and Evaluation of Synthetic Delivery Formulations for Peptide-Based Cancer Vaccines.
With the recent advances in neoantigen identification, peptide-based cancer vaccines offer substantial potential in the field of immunotherapy. However, rapid clearance, low immunogenicity, and insufficient antigen-presenting cell (APC) uptake limit the efficacy of peptide-based cancer vaccines. This review explores the barriers hindering vaccine efficiency, highlights recent advancements in synthetic delivery systems, and features strategies for the key delivery steps of lymph node (LN) drainage, APC delivery, cross-presentation strategies, and adjuvant incorporation. This paper also discusses the design of preclinical studies evaluating vaccine efficiency, including vaccine administration routes and murine tumor models.