有机溶剂纳滤在制药中的应用

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-03-22 DOI:10.1021/acs.oprd.3c00470
Hui Xiao*, Yanyue Feng*, William R. F. Goundry and Staffan Karlsson, 
{"title":"有机溶剂纳滤在制药中的应用","authors":"Hui Xiao*,&nbsp;Yanyue Feng*,&nbsp;William R. F. Goundry and Staffan Karlsson,&nbsp;","doi":"10.1021/acs.oprd.3c00470","DOIUrl":null,"url":null,"abstract":"<p >Separation and purification in organic solvents are indispensable procedures in pharmaceutical manufacturing. However, they still heavily rely on the conventional separation technologies of distillation and chromatography, resulting in high energy and massive solvent consumption. As an alternative, organic solvent nanofiltration (OSN) offers the benefits of low energy consumption, low solid waste generation, and easy scale-up and incorporation into continuous processes. Thus, there is a growing interest in employing membrane technology in the pharmaceutical area to improve process sustainability and energy efficiency. This Review comprehensively summarizes the recent progress (especially the last 10 years) of organic solvent nanofiltration and its applications in the pharmaceutical industry, including the concentration and purification of active pharmaceutical ingredients, homogeneous catalyst recovery, solvent exchange and recovery, and OSN-assisted peptide/oligonucleotide synthesis. Furthermore, the challenges and future perspectives of membrane technology in pharmaceutical applications are discussed in detail.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.3c00470","citationCount":"0","resultStr":"{\"title\":\"Organic Solvent Nanofiltration in Pharmaceutical Applications\",\"authors\":\"Hui Xiao*,&nbsp;Yanyue Feng*,&nbsp;William R. F. Goundry and Staffan Karlsson,&nbsp;\",\"doi\":\"10.1021/acs.oprd.3c00470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Separation and purification in organic solvents are indispensable procedures in pharmaceutical manufacturing. However, they still heavily rely on the conventional separation technologies of distillation and chromatography, resulting in high energy and massive solvent consumption. As an alternative, organic solvent nanofiltration (OSN) offers the benefits of low energy consumption, low solid waste generation, and easy scale-up and incorporation into continuous processes. Thus, there is a growing interest in employing membrane technology in the pharmaceutical area to improve process sustainability and energy efficiency. This Review comprehensively summarizes the recent progress (especially the last 10 years) of organic solvent nanofiltration and its applications in the pharmaceutical industry, including the concentration and purification of active pharmaceutical ingredients, homogeneous catalyst recovery, solvent exchange and recovery, and OSN-assisted peptide/oligonucleotide synthesis. Furthermore, the challenges and future perspectives of membrane technology in pharmaceutical applications are discussed in detail.</p>\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.3c00470\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00470\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.3c00470","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

使用有机溶剂进行分离和提纯是制药过程中不可或缺的程序。然而,它们仍然严重依赖蒸馏和色谱等传统分离技术,导致高能耗和大量溶剂消耗。作为一种替代方法,有机溶剂纳滤(OSN)具有能耗低、固体废物产生量少、易于放大和融入连续工艺等优点。因此,在制药领域采用膜技术来提高工艺可持续性和能源效率的兴趣日益浓厚。本综述全面总结了有机溶剂纳滤的最新进展(尤其是过去 10 年)及其在制药行业的应用,包括活性药物成分的浓缩和纯化、均相催化剂回收、溶剂交换和回收以及 OSN 辅助的多肽/寡核苷酸合成。此外,还详细讨论了膜技术在制药应用中的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic Solvent Nanofiltration in Pharmaceutical Applications

Separation and purification in organic solvents are indispensable procedures in pharmaceutical manufacturing. However, they still heavily rely on the conventional separation technologies of distillation and chromatography, resulting in high energy and massive solvent consumption. As an alternative, organic solvent nanofiltration (OSN) offers the benefits of low energy consumption, low solid waste generation, and easy scale-up and incorporation into continuous processes. Thus, there is a growing interest in employing membrane technology in the pharmaceutical area to improve process sustainability and energy efficiency. This Review comprehensively summarizes the recent progress (especially the last 10 years) of organic solvent nanofiltration and its applications in the pharmaceutical industry, including the concentration and purification of active pharmaceutical ingredients, homogeneous catalyst recovery, solvent exchange and recovery, and OSN-assisted peptide/oligonucleotide synthesis. Furthermore, the challenges and future perspectives of membrane technology in pharmaceutical applications are discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Derisking Crystallization Process Development and Scale-Up Using a Complementary, “Quick and Dirty” Digital Design Catalytic Activity of Triphenylphosphine for Electrophilic Aromatic Bromination Using N-Bromosuccinimide and Process Safety Evaluation Organozinc Reagents: Highly Efficient Scalable Continuous Conversion in Various Concentrations and Reaction Types Synthesis of Enantiopure Fluoropiperidines via Biocatalytic Desymmetrization and Flow Photochemical Decarboxylative Fluorination Economic, One-Pot Synthesis of Diethyl Furoxan Dicarboxylate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1