{"title":"果蝇神经肌肉接头的突触电生理学","authors":"Bing Zhang, Bryan Stewart","doi":"10.1101/pdb.top107820","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical synaptic transmission is an important means of neuronal communication in the nervous system. Upon the arrival of an action potential, the nerve terminal experiences an influx of calcium ions, which in turn trigger the exocytosis of synaptic vesicles (SVs) and the release of neurotransmitters into the synaptic cleft. Transmitters elicit synaptic responses in the postsynaptic cell by binding to and activating specific receptors. This is followed by the recycling of SVs at presynaptic terminals. The <i>Drosophila</i> larval neuromuscular junction (NMJ) shares many structural and functional similarities to synapses in other animals, including humans. These include the basic features of synaptic transmission, as well as the molecular mechanisms regulating the SV cycle. Because of its large size, easy accessibility, and well-characterized genetics, the fly NMJ is an excellent model system for dissecting the cellular and molecular mechanisms of synaptic transmission. Here, we describe the theory and practice of electrophysiology as applied to the <i>Drosophila</i> larval NMJ preparation. We introduce the basics of membrane potentials, with an emphasis on the resting potential and synaptic potential. We also describe the equipment and methods required to set up an electrophysiology rig.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top107820"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic Electrophysiology of the <i>Drosophila</i> Neuromuscular Junction.\",\"authors\":\"Bing Zhang, Bryan Stewart\",\"doi\":\"10.1101/pdb.top107820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical synaptic transmission is an important means of neuronal communication in the nervous system. Upon the arrival of an action potential, the nerve terminal experiences an influx of calcium ions, which in turn trigger the exocytosis of synaptic vesicles (SVs) and the release of neurotransmitters into the synaptic cleft. Transmitters elicit synaptic responses in the postsynaptic cell by binding to and activating specific receptors. This is followed by the recycling of SVs at presynaptic terminals. The <i>Drosophila</i> larval neuromuscular junction (NMJ) shares many structural and functional similarities to synapses in other animals, including humans. These include the basic features of synaptic transmission, as well as the molecular mechanisms regulating the SV cycle. Because of its large size, easy accessibility, and well-characterized genetics, the fly NMJ is an excellent model system for dissecting the cellular and molecular mechanisms of synaptic transmission. Here, we describe the theory and practice of electrophysiology as applied to the <i>Drosophila</i> larval NMJ preparation. We introduce the basics of membrane potentials, with an emphasis on the resting potential and synaptic potential. We also describe the equipment and methods required to set up an electrophysiology rig.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"pdb.top107820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top107820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top107820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synaptic Electrophysiology of the Drosophila Neuromuscular Junction.
Chemical synaptic transmission is an important means of neuronal communication in the nervous system. Upon the arrival of an action potential, the nerve terminal experiences an influx of calcium ions, which in turn trigger the exocytosis of synaptic vesicles (SVs) and the release of neurotransmitters into the synaptic cleft. Transmitters elicit synaptic responses in the postsynaptic cell by binding to and activating specific receptors. This is followed by the recycling of SVs at presynaptic terminals. The Drosophila larval neuromuscular junction (NMJ) shares many structural and functional similarities to synapses in other animals, including humans. These include the basic features of synaptic transmission, as well as the molecular mechanisms regulating the SV cycle. Because of its large size, easy accessibility, and well-characterized genetics, the fly NMJ is an excellent model system for dissecting the cellular and molecular mechanisms of synaptic transmission. Here, we describe the theory and practice of electrophysiology as applied to the Drosophila larval NMJ preparation. We introduce the basics of membrane potentials, with an emphasis on the resting potential and synaptic potential. We also describe the equipment and methods required to set up an electrophysiology rig.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.