Kai-Yuan Wang, Shi-Mei Wu, Zheng-Jian Yao, Yun-Xia Zhu, Xiao Han
{"title":"TRPM5不足介导脂肪毒性诱导的胰腺β细胞功能障碍","authors":"Kai-Yuan Wang, Shi-Mei Wu, Zheng-Jian Yao, Yun-Xia Zhu, Xiao Han","doi":"10.1007/s11596-023-2795-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>While the reduction of transient receptor potential channel subfamily M member 5 (TRPM5) has been reported in islet cells from type 2 diabetic (T2D) mouse models, its role in lipotoxicity-induced pancreatic β-cell dysfunction remains unclear. This study aims to study its role.</p><p><strong>Methods: </strong>Pancreas slices were prepared from mice subjected to a high-fat-diet (HFD) at different time points, and TRPM5 expression in the pancreatic β cells was examined using immunofluorescence staining. Glucose-stimulated insulin secretion (GSIS) defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate (Palm). Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm, and the TRPM5 expression was detected using qRT-PCR and Western blotting. Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown. The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5 (Ad-Trpm5).</p><p><strong>Results: </strong>HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets. Palm reduced TRPM5 protein expression in a time- and dose-dependent manner in MIN6 cells. Palm also inhibited TRPM5 expression in primary mouse islets. Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis. Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique to β cells.</p><p><strong>Conclusion: </strong>Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreatic β cells both in vivo and in vitro and, in turn, drives β-cell dysfunction.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":"346-354"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insufficient TRPM5 Mediates Lipotoxicity-induced Pancreatic β-cell Dysfunction.\",\"authors\":\"Kai-Yuan Wang, Shi-Mei Wu, Zheng-Jian Yao, Yun-Xia Zhu, Xiao Han\",\"doi\":\"10.1007/s11596-023-2795-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>While the reduction of transient receptor potential channel subfamily M member 5 (TRPM5) has been reported in islet cells from type 2 diabetic (T2D) mouse models, its role in lipotoxicity-induced pancreatic β-cell dysfunction remains unclear. This study aims to study its role.</p><p><strong>Methods: </strong>Pancreas slices were prepared from mice subjected to a high-fat-diet (HFD) at different time points, and TRPM5 expression in the pancreatic β cells was examined using immunofluorescence staining. Glucose-stimulated insulin secretion (GSIS) defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate (Palm). Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm, and the TRPM5 expression was detected using qRT-PCR and Western blotting. Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown. The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5 (Ad-Trpm5).</p><p><strong>Results: </strong>HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets. Palm reduced TRPM5 protein expression in a time- and dose-dependent manner in MIN6 cells. Palm also inhibited TRPM5 expression in primary mouse islets. Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis. Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique to β cells.</p><p><strong>Conclusion: </strong>Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreatic β cells both in vivo and in vitro and, in turn, drives β-cell dysfunction.</p>\",\"PeriodicalId\":10820,\"journal\":{\"name\":\"Current Medical Science\",\"volume\":\" \",\"pages\":\"346-354\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-023-2795-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-023-2795-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Objective: While the reduction of transient receptor potential channel subfamily M member 5 (TRPM5) has been reported in islet cells from type 2 diabetic (T2D) mouse models, its role in lipotoxicity-induced pancreatic β-cell dysfunction remains unclear. This study aims to study its role.
Methods: Pancreas slices were prepared from mice subjected to a high-fat-diet (HFD) at different time points, and TRPM5 expression in the pancreatic β cells was examined using immunofluorescence staining. Glucose-stimulated insulin secretion (GSIS) defects caused by lipotoxicity were mimicked by saturated fatty acid palmitate (Palm). Primary mouse islets and mouse insulinoma MIN6 cells were treated with Palm, and the TRPM5 expression was detected using qRT-PCR and Western blotting. Palm-induced GSIS defects were measured following siRNA-based Trpm5 knockdown. The detrimental effects of Palm on primary mouse islets were also assessed after overexpressing Trpm5 via an adenovirus-derived Trpm5 (Ad-Trpm5).
Results: HFD feeding decreased the mRNA levels and protein expression of TRPM5 in mouse pancreatic islets. Palm reduced TRPM5 protein expression in a time- and dose-dependent manner in MIN6 cells. Palm also inhibited TRPM5 expression in primary mouse islets. Knockdown of Trpm5 inhibited insulin secretion upon high glucose stimulation but had little effect on insulin biosynthesis. Overexpression of Trpm5 reversed Palm-induced GSIS defects and the production of functional maturation molecules unique to β cells.
Conclusion: Our findings suggest that lipotoxicity inhibits TRPM5 expression in pancreatic β cells both in vivo and in vitro and, in turn, drives β-cell dysfunction.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.