组织病理学图像中乳腺癌检测的深度学习方法:综述。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-01 DOI:10.3233/CBM-230251
Lakshmi Priya C V, Biju V G, Vinod B R, Sivakumar Ramachandran
{"title":"组织病理学图像中乳腺癌检测的深度学习方法:综述。","authors":"Lakshmi Priya C V, Biju V G, Vinod B R, Sivakumar Ramachandran","doi":"10.3233/CBM-230251","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer is one of the leading causes of death in women worldwide. Histopathology analysis of breast tissue is an essential tool for diagnosing and staging breast cancer. In recent years, there has been a significant increase in research exploring the use of deep-learning approaches for breast cancer detection from histopathology images.</p><p><strong>Objective: </strong>To provide an overview of the current state-of-the-art technologies in automated breast cancer detection in histopathology images using deep learning techniques.</p><p><strong>Methods: </strong>This review focuses on the use of deep learning algorithms for the detection and classification of breast cancer from histopathology images. We provide an overview of publicly available histopathology image datasets for breast cancer detection. We also highlight the strengths and weaknesses of these architectures and their performance on different histopathology image datasets. Finally, we discuss the challenges associated with using deep learning techniques for breast cancer detection, including the need for large and diverse datasets and the interpretability of deep learning models.</p><p><strong>Results: </strong>Deep learning techniques have shown great promise in accurately detecting and classifying breast cancer from histopathology images. Although the accuracy levels vary depending on the specific data set, image pre-processing techniques, and deep learning architecture used, these results highlight the potential of deep learning algorithms in improving the accuracy and efficiency of breast cancer detection from histopathology images.</p><p><strong>Conclusion: </strong>This review has presented a thorough account of the current state-of-the-art techniques for detecting breast cancer using histopathology images. The integration of machine learning and deep learning algorithms has demonstrated promising results in accurately identifying breast cancer from histopathology images. The insights gathered from this review can act as a valuable reference for researchers in this field who are developing diagnostic strategies using histopathology images. Overall, the objective of this review is to spark interest among scholars in this complex field and acquaint them with cutting-edge technologies in breast cancer detection using histopathology images.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning approaches for breast cancer detection in histopathology images: A review.\",\"authors\":\"Lakshmi Priya C V, Biju V G, Vinod B R, Sivakumar Ramachandran\",\"doi\":\"10.3233/CBM-230251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Breast cancer is one of the leading causes of death in women worldwide. Histopathology analysis of breast tissue is an essential tool for diagnosing and staging breast cancer. In recent years, there has been a significant increase in research exploring the use of deep-learning approaches for breast cancer detection from histopathology images.</p><p><strong>Objective: </strong>To provide an overview of the current state-of-the-art technologies in automated breast cancer detection in histopathology images using deep learning techniques.</p><p><strong>Methods: </strong>This review focuses on the use of deep learning algorithms for the detection and classification of breast cancer from histopathology images. We provide an overview of publicly available histopathology image datasets for breast cancer detection. We also highlight the strengths and weaknesses of these architectures and their performance on different histopathology image datasets. Finally, we discuss the challenges associated with using deep learning techniques for breast cancer detection, including the need for large and diverse datasets and the interpretability of deep learning models.</p><p><strong>Results: </strong>Deep learning techniques have shown great promise in accurately detecting and classifying breast cancer from histopathology images. Although the accuracy levels vary depending on the specific data set, image pre-processing techniques, and deep learning architecture used, these results highlight the potential of deep learning algorithms in improving the accuracy and efficiency of breast cancer detection from histopathology images.</p><p><strong>Conclusion: </strong>This review has presented a thorough account of the current state-of-the-art techniques for detecting breast cancer using histopathology images. The integration of machine learning and deep learning algorithms has demonstrated promising results in accurately identifying breast cancer from histopathology images. The insights gathered from this review can act as a valuable reference for researchers in this field who are developing diagnostic strategies using histopathology images. Overall, the objective of this review is to spark interest among scholars in this complex field and acquaint them with cutting-edge technologies in breast cancer detection using histopathology images.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CBM-230251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CBM-230251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

背景:乳腺癌是导致全球女性死亡的主要原因之一。乳腺组织的组织病理学分析是诊断和分期乳腺癌的重要工具。近年来,探索使用深度学习方法从组织病理学图像中检测乳腺癌的研究显著增加:概述当前利用深度学习技术在组织病理学图像中自动检测乳腺癌的最新技术:本综述重点关注使用深度学习算法对组织病理学图像中的乳腺癌进行检测和分类。我们概述了用于乳腺癌检测的公开可用组织病理学图像数据集。我们还强调了这些架构的优缺点及其在不同组织病理学图像数据集上的表现。最后,我们讨论了将深度学习技术用于乳腺癌检测所面临的挑战,包括对大型、多样化数据集的需求以及深度学习模型的可解释性:深度学习技术在从组织病理学图像中准确检测乳腺癌并对其进行分类方面已显示出巨大前景。尽管准确率水平因所使用的特定数据集、图像预处理技术和深度学习架构而异,但这些结果凸显了深度学习算法在提高从组织病理学图像中检测乳腺癌的准确率和效率方面的潜力:本综述全面介绍了目前利用组织病理学图像检测乳腺癌的最先进技术。机器学习和深度学习算法的整合在从组织病理学图像中准确识别乳腺癌方面取得了可喜的成果。本综述中收集的见解可为该领域的研究人员提供有价值的参考,他们正在利用组织病理学图像开发诊断策略。总之,本综述旨在激发学者们对这一复杂领域的兴趣,让他们了解利用组织病理学图像检测乳腺癌的前沿技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning approaches for breast cancer detection in histopathology images: A review.

Background: Breast cancer is one of the leading causes of death in women worldwide. Histopathology analysis of breast tissue is an essential tool for diagnosing and staging breast cancer. In recent years, there has been a significant increase in research exploring the use of deep-learning approaches for breast cancer detection from histopathology images.

Objective: To provide an overview of the current state-of-the-art technologies in automated breast cancer detection in histopathology images using deep learning techniques.

Methods: This review focuses on the use of deep learning algorithms for the detection and classification of breast cancer from histopathology images. We provide an overview of publicly available histopathology image datasets for breast cancer detection. We also highlight the strengths and weaknesses of these architectures and their performance on different histopathology image datasets. Finally, we discuss the challenges associated with using deep learning techniques for breast cancer detection, including the need for large and diverse datasets and the interpretability of deep learning models.

Results: Deep learning techniques have shown great promise in accurately detecting and classifying breast cancer from histopathology images. Although the accuracy levels vary depending on the specific data set, image pre-processing techniques, and deep learning architecture used, these results highlight the potential of deep learning algorithms in improving the accuracy and efficiency of breast cancer detection from histopathology images.

Conclusion: This review has presented a thorough account of the current state-of-the-art techniques for detecting breast cancer using histopathology images. The integration of machine learning and deep learning algorithms has demonstrated promising results in accurately identifying breast cancer from histopathology images. The insights gathered from this review can act as a valuable reference for researchers in this field who are developing diagnostic strategies using histopathology images. Overall, the objective of this review is to spark interest among scholars in this complex field and acquaint them with cutting-edge technologies in breast cancer detection using histopathology images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1