{"title":"用于检测小儿脑部核磁共振成像多微结构的基于中心的新型深度对比度学习方法","authors":"Lingfeng Zhang , Nishard Abdeen , Jochen Lang","doi":"10.1016/j.compmedimag.2024.102373","DOIUrl":null,"url":null,"abstract":"<div><p>Polymicrogyria (PMG) is a disorder of cortical organization mainly seen in children, which can be associated with seizures, developmental delay and motor weakness. PMG is typically diagnosed on magnetic resonance imaging (MRI) but some cases can be challenging to detect even for experienced radiologists. In this study, we create an open pediatric MRI dataset (PPMR) containing both PMG and control cases from the Children’s Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The differences between PMG and control MRIs are subtle and the true distribution of the features of the disease is unknown. This makes automatic detection of potential PMG cases in MRI difficult. To enable the automatic detection of potential PMG cases, we propose an anomaly detection method based on a novel center-based deep contrastive metric learning loss function (cDCM). Despite working with a small and imbalanced dataset our method achieves 88.07% recall at 71.86% precision. This will facilitate a computer-aided tool for radiologists to select potential PMG MRIs. To the best of our knowledge, our research is the first to apply machine learning techniques to identify PMG solely from MRI.</p><p>Our code is available at: <span>https://github.com/RichardChangCA/Deep-Contrastive-Metric-Learning-Method-to-Detect-Polymicrogyria-in-Pediatric-Brain-MRI</span><svg><path></path></svg>.</p><p>Our pediatric MRI dataset is available at: <span>https://www.kaggle.com/datasets/lingfengzhang/pediatric-polymicrogyria-mri-dataset</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"114 ","pages":"Article 102373"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel center-based deep contrastive metric learning method for the detection of polymicrogyria in pediatric brain MRI\",\"authors\":\"Lingfeng Zhang , Nishard Abdeen , Jochen Lang\",\"doi\":\"10.1016/j.compmedimag.2024.102373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymicrogyria (PMG) is a disorder of cortical organization mainly seen in children, which can be associated with seizures, developmental delay and motor weakness. PMG is typically diagnosed on magnetic resonance imaging (MRI) but some cases can be challenging to detect even for experienced radiologists. In this study, we create an open pediatric MRI dataset (PPMR) containing both PMG and control cases from the Children’s Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The differences between PMG and control MRIs are subtle and the true distribution of the features of the disease is unknown. This makes automatic detection of potential PMG cases in MRI difficult. To enable the automatic detection of potential PMG cases, we propose an anomaly detection method based on a novel center-based deep contrastive metric learning loss function (cDCM). Despite working with a small and imbalanced dataset our method achieves 88.07% recall at 71.86% precision. This will facilitate a computer-aided tool for radiologists to select potential PMG MRIs. To the best of our knowledge, our research is the first to apply machine learning techniques to identify PMG solely from MRI.</p><p>Our code is available at: <span>https://github.com/RichardChangCA/Deep-Contrastive-Metric-Learning-Method-to-Detect-Polymicrogyria-in-Pediatric-Brain-MRI</span><svg><path></path></svg>.</p><p>Our pediatric MRI dataset is available at: <span>https://www.kaggle.com/datasets/lingfengzhang/pediatric-polymicrogyria-mri-dataset</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"114 \",\"pages\":\"Article 102373\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000508\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A novel center-based deep contrastive metric learning method for the detection of polymicrogyria in pediatric brain MRI
Polymicrogyria (PMG) is a disorder of cortical organization mainly seen in children, which can be associated with seizures, developmental delay and motor weakness. PMG is typically diagnosed on magnetic resonance imaging (MRI) but some cases can be challenging to detect even for experienced radiologists. In this study, we create an open pediatric MRI dataset (PPMR) containing both PMG and control cases from the Children’s Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The differences between PMG and control MRIs are subtle and the true distribution of the features of the disease is unknown. This makes automatic detection of potential PMG cases in MRI difficult. To enable the automatic detection of potential PMG cases, we propose an anomaly detection method based on a novel center-based deep contrastive metric learning loss function (cDCM). Despite working with a small and imbalanced dataset our method achieves 88.07% recall at 71.86% precision. This will facilitate a computer-aided tool for radiologists to select potential PMG MRIs. To the best of our knowledge, our research is the first to apply machine learning techniques to identify PMG solely from MRI.
Our code is available at: https://github.com/RichardChangCA/Deep-Contrastive-Metric-Learning-Method-to-Detect-Polymicrogyria-in-Pediatric-Brain-MRI.
Our pediatric MRI dataset is available at: https://www.kaggle.com/datasets/lingfengzhang/pediatric-polymicrogyria-mri-dataset.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.