{"title":"最大后验贝叶斯方法的效果优于用于丁苯磺胺精确给药的非室间分析法。","authors":"Jasmine H Hughes, Janel Long-Boyle, Ron J Keizer","doi":"10.1007/s10928-024-09915-w","DOIUrl":null,"url":null,"abstract":"<p><p>Dose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they estimate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. Using busulfan as an example application and area under the concentration-time curve (AUC) as a target exposure metric, these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treatment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on real-world data (correlation coefficients of 0.945-0.998) as assessed by Bland-Altman plots, although agreement between NCA and MAP methods was higher during the first dosing interval (0.982-0.994) compared to subsequent dosing intervals (0.918-0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true simulated target attainment was lower for NCA (63-66%) versus MAP (91-93%). The largest differences in AUC estimation were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the methods considered time-dependent clearance and concentration-time points collected in earlier intervals. In conclusion, although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated exposure targets may require adjusting to maintain a consistent exposure.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"279-288"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maximum a posteriori Bayesian methods out-perform non-compartmental analysis for busulfan precision dosing.\",\"authors\":\"Jasmine H Hughes, Janel Long-Boyle, Ron J Keizer\",\"doi\":\"10.1007/s10928-024-09915-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they estimate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. Using busulfan as an example application and area under the concentration-time curve (AUC) as a target exposure metric, these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treatment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on real-world data (correlation coefficients of 0.945-0.998) as assessed by Bland-Altman plots, although agreement between NCA and MAP methods was higher during the first dosing interval (0.982-0.994) compared to subsequent dosing intervals (0.918-0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true simulated target attainment was lower for NCA (63-66%) versus MAP (91-93%). The largest differences in AUC estimation were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the methods considered time-dependent clearance and concentration-time points collected in earlier intervals. In conclusion, although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated exposure targets may require adjusting to maintain a consistent exposure.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"279-288\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09915-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09915-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Maximum a posteriori Bayesian methods out-perform non-compartmental analysis for busulfan precision dosing.
Dose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they estimate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. Using busulfan as an example application and area under the concentration-time curve (AUC) as a target exposure metric, these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treatment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on real-world data (correlation coefficients of 0.945-0.998) as assessed by Bland-Altman plots, although agreement between NCA and MAP methods was higher during the first dosing interval (0.982-0.994) compared to subsequent dosing intervals (0.918-0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true simulated target attainment was lower for NCA (63-66%) versus MAP (91-93%). The largest differences in AUC estimation were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the methods considered time-dependent clearance and concentration-time points collected in earlier intervals. In conclusion, although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated exposure targets may require adjusting to maintain a consistent exposure.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.