{"title":"由心脏触发心传导交通和压力对西蒙任务中自动反应的影响。","authors":"Leon von Haugwitz, Edmund Wascher, Mauro F Larra","doi":"10.1111/psyp.14572","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in cardioafferent traffic are relayed to the brain via arterial baroreceptors and have been shown to modulate perceptual processing. However, less is known about the cognitive-behavioral consequences of these effects and their role during stress. Here, we investigated in how far automatic responses during the Simon task were modulated by exposure to a laboratory stressor and the different phases of the cardiac cycle. In this study, 30 participants performed three blocks of a combined horizontal and vertical Simon task, which is characterized by either sensorimotor or cognitive response conflicts, respectively. Before each block, subjects were exposed to both the cold pressor test (CPT) and a control condition according to a within-subjects design. Target stimuli were presented during either systole or diastole. Behavioral and EEG-correlates of task processing were assessed along with subjective, cardiovascular, and endocrine measures of stress. The stress induction was successful yielding significant increases in all these measures compared to control. Moreover, we found the expected Simon effects: in incompatible compared to compatible trials performance was decreased and LRP latency as well as anterior N2 area increased. Importantly, accuracy was improved in compatible but reduced in incompatible trials during systole vs. diastole but only in the horizontal Simon condition. Stress dampened N2 area, however, no interactions with cardiac cycle were evident. These results indicate a faciliatory effect of cardioafferent traffic on automated sensorimotor processes.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triggered by your heart: Effects of cardioafferent traffic and stress on automatic responses in a Simon task.\",\"authors\":\"Leon von Haugwitz, Edmund Wascher, Mauro F Larra\",\"doi\":\"10.1111/psyp.14572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variations in cardioafferent traffic are relayed to the brain via arterial baroreceptors and have been shown to modulate perceptual processing. However, less is known about the cognitive-behavioral consequences of these effects and their role during stress. Here, we investigated in how far automatic responses during the Simon task were modulated by exposure to a laboratory stressor and the different phases of the cardiac cycle. In this study, 30 participants performed three blocks of a combined horizontal and vertical Simon task, which is characterized by either sensorimotor or cognitive response conflicts, respectively. Before each block, subjects were exposed to both the cold pressor test (CPT) and a control condition according to a within-subjects design. Target stimuli were presented during either systole or diastole. Behavioral and EEG-correlates of task processing were assessed along with subjective, cardiovascular, and endocrine measures of stress. The stress induction was successful yielding significant increases in all these measures compared to control. Moreover, we found the expected Simon effects: in incompatible compared to compatible trials performance was decreased and LRP latency as well as anterior N2 area increased. Importantly, accuracy was improved in compatible but reduced in incompatible trials during systole vs. diastole but only in the horizontal Simon condition. Stress dampened N2 area, however, no interactions with cardiac cycle were evident. These results indicate a faciliatory effect of cardioafferent traffic on automated sensorimotor processes.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14572\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14572","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Triggered by your heart: Effects of cardioafferent traffic and stress on automatic responses in a Simon task.
Variations in cardioafferent traffic are relayed to the brain via arterial baroreceptors and have been shown to modulate perceptual processing. However, less is known about the cognitive-behavioral consequences of these effects and their role during stress. Here, we investigated in how far automatic responses during the Simon task were modulated by exposure to a laboratory stressor and the different phases of the cardiac cycle. In this study, 30 participants performed three blocks of a combined horizontal and vertical Simon task, which is characterized by either sensorimotor or cognitive response conflicts, respectively. Before each block, subjects were exposed to both the cold pressor test (CPT) and a control condition according to a within-subjects design. Target stimuli were presented during either systole or diastole. Behavioral and EEG-correlates of task processing were assessed along with subjective, cardiovascular, and endocrine measures of stress. The stress induction was successful yielding significant increases in all these measures compared to control. Moreover, we found the expected Simon effects: in incompatible compared to compatible trials performance was decreased and LRP latency as well as anterior N2 area increased. Importantly, accuracy was improved in compatible but reduced in incompatible trials during systole vs. diastole but only in the horizontal Simon condition. Stress dampened N2 area, however, no interactions with cardiac cycle were evident. These results indicate a faciliatory effect of cardioafferent traffic on automated sensorimotor processes.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.