{"title":"用于长尾分类的具有知识补充功能的分层卷积神经网络","authors":"Hong Zhao, Zhengyu Li, Wenwei He, Yan Zhao","doi":"10.1145/3653717","DOIUrl":null,"url":null,"abstract":"<p>Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"131 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Convolutional Neural Network with Knowledge Complementation for Long-Tailed Classification\",\"authors\":\"Hong Zhao, Zhengyu Li, Wenwei He, Yan Zhao\",\"doi\":\"10.1145/3653717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653717\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653717","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Hierarchical Convolutional Neural Network with Knowledge Complementation for Long-Tailed Classification
Existing methods based on transfer learning leverage auxiliary information to help tail generalization and improve the performance of the tail classes. However, they cannot fully exploit the relationships between auxiliary information and tail classes and bring irrelevant knowledge to the tail classes. To solve this problem, we propose a hierarchical CNN with knowledge complementation, which regards hierarchical relationships as auxiliary information and transfers relevant knowledge to tail classes. First, we integrate semantics and clustering relationships as hierarchical knowledge into the CNN to guide feature learning. Then, we design a complementary strategy to jointly exploit the two types of knowledge, where semantic knowledge acts as a prior dependence and clustering knowledge reduces the negative information caused by excessive semantic dependence (i.e., semantic gaps). In this way, the CNN facilitates the utilization of the two complementary hierarchical relationships and transfers useful knowledge to tail data to improve long-tailed classification accuracy. Experimental results on public benchmarks show that the proposed model outperforms existing methods. In particular, our model improves accuracy by 3.46% compared with the second-best method on the long-tailed tieredImageNet dataset.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.