{"title":"基于漏斗的具有死区和执行器故障的非线性系统的自适应神经容错控制:在刚性机器人机械手和倒摆系统中的应用","authors":"Ymnah Alruwaily, Mohamed Kharrat","doi":"10.1155/2024/5344619","DOIUrl":null,"url":null,"abstract":"<p>This study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modified transformation for funnel error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping technique. The proposed controller guarantees the output tracking error stays within a predefined funnel, and all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator system and an inverted pendulum system are conducted to validate the practicality and effectiveness of the proposed control method.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Funnel-Based Adaptive Neural Fault-Tolerant Control for Nonlinear Systems with Dead-Zone and Actuator Faults: Application to Rigid Robot Manipulator and Inverted Pendulum Systems\",\"authors\":\"Ymnah Alruwaily, Mohamed Kharrat\",\"doi\":\"10.1155/2024/5344619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modified transformation for funnel error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping technique. The proposed controller guarantees the output tracking error stays within a predefined funnel, and all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator system and an inverted pendulum system are conducted to validate the practicality and effectiveness of the proposed control method.</p>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5344619\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5344619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Funnel-Based Adaptive Neural Fault-Tolerant Control for Nonlinear Systems with Dead-Zone and Actuator Faults: Application to Rigid Robot Manipulator and Inverted Pendulum Systems
This study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modified transformation for funnel error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping technique. The proposed controller guarantees the output tracking error stays within a predefined funnel, and all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator system and an inverted pendulum system are conducted to validate the practicality and effectiveness of the proposed control method.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.