Loran Cheplanov, Shai Avidan, David J. Bonfil, Iftach Klapp
{"title":"利用基于深度神经网络的去噪方法重建高光谱图像动态范围","authors":"Loran Cheplanov, Shai Avidan, David J. Bonfil, Iftach Klapp","doi":"10.1007/s00138-024-01523-5","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization’s Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of <span>\\(\\ell _{2}\\)</span> and Kullback–Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements’ mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"25 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image dynamic range reconstruction using deep neural network-based denoising methods\",\"authors\":\"Loran Cheplanov, Shai Avidan, David J. Bonfil, Iftach Klapp\",\"doi\":\"10.1007/s00138-024-01523-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization’s Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of <span>\\\\(\\\\ell _{2}\\\\)</span> and Kullback–Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements’ mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01523-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01523-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hyperspectral image dynamic range reconstruction using deep neural network-based denoising methods
Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization’s Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of \(\ell _{2}\) and Kullback–Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements’ mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.