冰盖下液层中非线性波包场中的粒子运动

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Theoretical and Mathematical Physics Pub Date : 2024-03-01 DOI:10.1134/s0040577924030097
{"title":"冰盖下液层中非线性波包场中的粒子运动","authors":"","doi":"10.1134/s0040577924030097","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p> We consider a liquid layer of a finite depth described by Euler’s equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid. </p> </span>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover\",\"authors\":\"\",\"doi\":\"10.1134/s0040577924030097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p> We consider a liquid layer of a finite depth described by Euler’s equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid. </p> </span>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0040577924030097\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0040577924030097","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了用欧拉方程描述的有限深度液层。冰盖的几何模型是非线性弹性基尔霍夫-洛夫板。我们确定了冰盖下液体粒子在无穷大处快速衰减的非线性表面行波场中的轨迹,即振幅很小但有限的孤波包(包络下的单色波,波速等于包络速度)。我们的分析基于描述孤波包类型水冰界面波结构的解的显式渐近表达式,以及这些波在液体深度产生的速度场的渐近解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover

Abstract

We consider a liquid layer of a finite depth described by Euler’s equations. The ice cover is geometrically modeled by a nonlinear elastic Kirchhoff–Love plate. We determine the trajectories of liquid particles under an ice cover in the field of a nonlinear surface traveling wave rapidly decaying at infinity, namely, a solitary wave packet (a monochromatic wave under the envelope, with the wave velocity equal to the envelope velocity) of a small but finite amplitude. Our analysis is based on the use of explicit asymptotic expressions for solutions describing the wave structures at the water–ice interface of a solitary wave packet type, as well as asymptotic solutions for the velocity field generated by these waves in the depth of the liquid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
期刊最新文献
Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling Second-order quantum argument shifts in $$Ugl_d$$ Nonlinear waves in a parabolic equation with a spatial argument rescaling operator and with time delay Asymptotics of solutions of the Cauchy problem for a singularly perturbed operator differential transport equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1