Jinwei Fu, Vahab Sarfarazi, Hadi Haeri, Saeed Delfan, Reza Bahrami, Xiao Wang
{"title":"单轴压缩试验下不同缺口尺寸石膏填充花岗岩试样的声发射和破损机理分析","authors":"Jinwei Fu, Vahab Sarfarazi, Hadi Haeri, Saeed Delfan, Reza Bahrami, Xiao Wang","doi":"10.1007/s40571-024-00738-7","DOIUrl":null,"url":null,"abstract":"<p>This research investigates how inserting notched gypsum filling between granite specimens affects their breakage under uniaxial compressive testing. Various thicknesses of gypsum filling slabs were placed between granite specimens, incorporating different dimensions and notch configurations. The investigated parameters include elastic modulus, Poisson’s ratio, uniaxial compressive strength, and Brazilian tensile strength of 5 GPa, 0.18, 7.4, and 1 MPa, respectively. Compression testing, at an axial load rate of 0.05 mm/min, was conducted on a total of 9 different models. Numerical simulations were performed on models with notched gypsum filling, varying thicknesses, and notch angles using Particle Flow Code in 2D. The results demonstrated that breakage behavior was primarily influenced by filling thickness and notch angle. The uniaxial compressive strengths in samples were found to be affected by fracture patterns and the breakage mechanism of the filling. The study revealed that the behavior of discontinuities is influenced by the number of induced tensile cracks, which increase with thicker filling. Acoustic emission (AE) hits during loading’s initial phase, a rapid increase in AE hits before the applied stress reached its peak, and significant AE hits accompanying each stress drop were observed. The breakage patterns and strengths were found to be similar in both experimental and numerical approaches.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"30 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic emission and breakage mechanism analysis on gypsum-filled granite specimens with varying notch dimensions under uniaxial compression testing\",\"authors\":\"Jinwei Fu, Vahab Sarfarazi, Hadi Haeri, Saeed Delfan, Reza Bahrami, Xiao Wang\",\"doi\":\"10.1007/s40571-024-00738-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigates how inserting notched gypsum filling between granite specimens affects their breakage under uniaxial compressive testing. Various thicknesses of gypsum filling slabs were placed between granite specimens, incorporating different dimensions and notch configurations. The investigated parameters include elastic modulus, Poisson’s ratio, uniaxial compressive strength, and Brazilian tensile strength of 5 GPa, 0.18, 7.4, and 1 MPa, respectively. Compression testing, at an axial load rate of 0.05 mm/min, was conducted on a total of 9 different models. Numerical simulations were performed on models with notched gypsum filling, varying thicknesses, and notch angles using Particle Flow Code in 2D. The results demonstrated that breakage behavior was primarily influenced by filling thickness and notch angle. The uniaxial compressive strengths in samples were found to be affected by fracture patterns and the breakage mechanism of the filling. The study revealed that the behavior of discontinuities is influenced by the number of induced tensile cracks, which increase with thicker filling. Acoustic emission (AE) hits during loading’s initial phase, a rapid increase in AE hits before the applied stress reached its peak, and significant AE hits accompanying each stress drop were observed. The breakage patterns and strengths were found to be similar in both experimental and numerical approaches.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00738-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00738-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Acoustic emission and breakage mechanism analysis on gypsum-filled granite specimens with varying notch dimensions under uniaxial compression testing
This research investigates how inserting notched gypsum filling between granite specimens affects their breakage under uniaxial compressive testing. Various thicknesses of gypsum filling slabs were placed between granite specimens, incorporating different dimensions and notch configurations. The investigated parameters include elastic modulus, Poisson’s ratio, uniaxial compressive strength, and Brazilian tensile strength of 5 GPa, 0.18, 7.4, and 1 MPa, respectively. Compression testing, at an axial load rate of 0.05 mm/min, was conducted on a total of 9 different models. Numerical simulations were performed on models with notched gypsum filling, varying thicknesses, and notch angles using Particle Flow Code in 2D. The results demonstrated that breakage behavior was primarily influenced by filling thickness and notch angle. The uniaxial compressive strengths in samples were found to be affected by fracture patterns and the breakage mechanism of the filling. The study revealed that the behavior of discontinuities is influenced by the number of induced tensile cracks, which increase with thicker filling. Acoustic emission (AE) hits during loading’s initial phase, a rapid increase in AE hits before the applied stress reached its peak, and significant AE hits accompanying each stress drop were observed. The breakage patterns and strengths were found to be similar in both experimental and numerical approaches.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.