{"title":"近煤层组重复开采条件下矿井顶板失稳及变形破碎特征研究","authors":"Yucheng Wang, Guiyi Wu, Dezhong Kong, Qi Zhang","doi":"10.1007/s40571-023-00706-7","DOIUrl":null,"url":null,"abstract":"<div><p>Poor stability of the quarry roof is particularly prominent in close coal seam group mining. To address this challenge, the stability of the quarry roof under repeated mining disturbance was investigated using a combination of indoor tests, similar simulations and numerical simulations. The study obtained that: under the influence of two repeated mining disturbances, the 17# coal roof fissures are especially developed, and the rock seam strength is lower and the deformation is increased. Compared with the single seam mining roof, the direct roof of the close coal seam group is more easily destroyed under the same roof pressure; the thickness of 16# coal seam is small, the basic roof breaks regularly with the forward advance of the working face, forming a stable “The roof will go through the process” of “stability-destabilization-restabilization”; while the thickness of 17# coal seam is larger, the broken rock of the roof cannot be hinged due to the large rotation angle. During the mining process, the overlying rock above the 17101 mining face will form a “cantilever beam” structure due to the direct collapse of the basic top rock. This formation leads to a significant stress concentration on the coal wall and top plate in front of the working face of the lower coal seam. The repeated mining of the lower coal seam causes the overlying rock to act as a bedding layer, moderating the mine pressure. Consequently, the mining of the upper coal seam results in a reduction of cyclic pressure steps during the repeated mining of the lower coal seam.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 3","pages":"1503 - 1516"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the destabilization and deformation breakage characteristics of the mine roof under repetitive mining of close coal seam group\",\"authors\":\"Yucheng Wang, Guiyi Wu, Dezhong Kong, Qi Zhang\",\"doi\":\"10.1007/s40571-023-00706-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poor stability of the quarry roof is particularly prominent in close coal seam group mining. To address this challenge, the stability of the quarry roof under repeated mining disturbance was investigated using a combination of indoor tests, similar simulations and numerical simulations. The study obtained that: under the influence of two repeated mining disturbances, the 17# coal roof fissures are especially developed, and the rock seam strength is lower and the deformation is increased. Compared with the single seam mining roof, the direct roof of the close coal seam group is more easily destroyed under the same roof pressure; the thickness of 16# coal seam is small, the basic roof breaks regularly with the forward advance of the working face, forming a stable “The roof will go through the process” of “stability-destabilization-restabilization”; while the thickness of 17# coal seam is larger, the broken rock of the roof cannot be hinged due to the large rotation angle. During the mining process, the overlying rock above the 17101 mining face will form a “cantilever beam” structure due to the direct collapse of the basic top rock. This formation leads to a significant stress concentration on the coal wall and top plate in front of the working face of the lower coal seam. The repeated mining of the lower coal seam causes the overlying rock to act as a bedding layer, moderating the mine pressure. Consequently, the mining of the upper coal seam results in a reduction of cyclic pressure steps during the repeated mining of the lower coal seam.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 3\",\"pages\":\"1503 - 1516\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00706-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00706-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Study on the destabilization and deformation breakage characteristics of the mine roof under repetitive mining of close coal seam group
Poor stability of the quarry roof is particularly prominent in close coal seam group mining. To address this challenge, the stability of the quarry roof under repeated mining disturbance was investigated using a combination of indoor tests, similar simulations and numerical simulations. The study obtained that: under the influence of two repeated mining disturbances, the 17# coal roof fissures are especially developed, and the rock seam strength is lower and the deformation is increased. Compared with the single seam mining roof, the direct roof of the close coal seam group is more easily destroyed under the same roof pressure; the thickness of 16# coal seam is small, the basic roof breaks regularly with the forward advance of the working face, forming a stable “The roof will go through the process” of “stability-destabilization-restabilization”; while the thickness of 17# coal seam is larger, the broken rock of the roof cannot be hinged due to the large rotation angle. During the mining process, the overlying rock above the 17101 mining face will form a “cantilever beam” structure due to the direct collapse of the basic top rock. This formation leads to a significant stress concentration on the coal wall and top plate in front of the working face of the lower coal seam. The repeated mining of the lower coal seam causes the overlying rock to act as a bedding layer, moderating the mine pressure. Consequently, the mining of the upper coal seam results in a reduction of cyclic pressure steps during the repeated mining of the lower coal seam.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.