修改和改进用于计算全局动态优化状态松弛的 RPD 方法的实现方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-23 DOI:10.1007/s10898-024-01381-5
{"title":"修改和改进用于计算全局动态优化状态松弛的 RPD 方法的实现方法","authors":"","doi":"10.1007/s10898-024-01381-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper presents an improved method for computing convex and concave relaxations of the parametric solutions of ordinary differential equations (ODEs). These are called state relaxations and are crucial for solving dynamic optimization problems to global optimality via branch-and-bound (B &amp;B). The new method improves upon an existing approach known as relaxation preserving dynamics (RPD). RPD is generally considered to be among the best available methods for computing state relaxations in terms of both efficiency and accuracy. However, it requires the solution of a hybrid dynamical system, whereas other similar methods only require the solution of a simple system of ODEs. This is problematic in the context of branch-and-bound because it leads to higher cost and reduced reliability (i.e., invalid relaxations can result if hybrid mode switches are not detected numerically). Moreover, there is no known sensitivity theory for the RPD hybrid system. This makes it impossible to compute subgradients of the RPD relaxations, which are essential for efficiently solving the associated B &amp;B lower bounding problems. To address these limitations, this paper presents a small but important modification of the RPD theory, and a corresponding modification of its numerical implementation, that crucially allows state relaxations to be computed by solving a system of ODEs rather than a hybrid system. This new RPD method is then compared to the original using two examples and shown to be more efficient, more robust, and of almost identical accuracy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization\",\"authors\":\"\",\"doi\":\"10.1007/s10898-024-01381-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This paper presents an improved method for computing convex and concave relaxations of the parametric solutions of ordinary differential equations (ODEs). These are called state relaxations and are crucial for solving dynamic optimization problems to global optimality via branch-and-bound (B &amp;B). The new method improves upon an existing approach known as relaxation preserving dynamics (RPD). RPD is generally considered to be among the best available methods for computing state relaxations in terms of both efficiency and accuracy. However, it requires the solution of a hybrid dynamical system, whereas other similar methods only require the solution of a simple system of ODEs. This is problematic in the context of branch-and-bound because it leads to higher cost and reduced reliability (i.e., invalid relaxations can result if hybrid mode switches are not detected numerically). Moreover, there is no known sensitivity theory for the RPD hybrid system. This makes it impossible to compute subgradients of the RPD relaxations, which are essential for efficiently solving the associated B &amp;B lower bounding problems. To address these limitations, this paper presents a small but important modification of the RPD theory, and a corresponding modification of its numerical implementation, that crucially allows state relaxations to be computed by solving a system of ODEs rather than a hybrid system. This new RPD method is then compared to the original using two examples and shown to be more efficient, more robust, and of almost identical accuracy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01381-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01381-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文介绍了一种计算常微分方程参数解的凸和凹松弛的改进方法。这些松弛被称为状态松弛,对于通过分支与边界(B &B )求解动态优化问题以达到全局最优至关重要。新方法改进了现有的一种方法,即松弛保护动力学(RPD)。一般认为,RPD 是目前计算状态松弛效率和准确性最好的方法之一。然而,它需要求解一个混合动力学系统,而其他类似方法只需要求解一个简单的 ODE 系统。这在分支-边界法中是有问题的,因为它会导致更高的成本和更低的可靠性(也就是说,如果混合模式切换没有被数值检测到,就会导致无效的松弛)。此外,RPD 混合系统没有已知的灵敏度理论。这导致无法计算 RPD 松弛的子梯度,而子梯度对于高效解决相关的 B &B 下界问题至关重要。为了解决这些局限性,本文对 RPD 理论进行了微小但重要的修改,并对其数值实现进行了相应的修改,关键是允许通过求解 ODE 系统而不是混合系统来计算状态松弛。然后,我们用两个例子将这种新的 RPD 方法与原始方法进行了比较,结果表明这种方法更高效、更稳健,而且精确度几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization

Abstract

This paper presents an improved method for computing convex and concave relaxations of the parametric solutions of ordinary differential equations (ODEs). These are called state relaxations and are crucial for solving dynamic optimization problems to global optimality via branch-and-bound (B &B). The new method improves upon an existing approach known as relaxation preserving dynamics (RPD). RPD is generally considered to be among the best available methods for computing state relaxations in terms of both efficiency and accuracy. However, it requires the solution of a hybrid dynamical system, whereas other similar methods only require the solution of a simple system of ODEs. This is problematic in the context of branch-and-bound because it leads to higher cost and reduced reliability (i.e., invalid relaxations can result if hybrid mode switches are not detected numerically). Moreover, there is no known sensitivity theory for the RPD hybrid system. This makes it impossible to compute subgradients of the RPD relaxations, which are essential for efficiently solving the associated B &B lower bounding problems. To address these limitations, this paper presents a small but important modification of the RPD theory, and a corresponding modification of its numerical implementation, that crucially allows state relaxations to be computed by solving a system of ODEs rather than a hybrid system. This new RPD method is then compared to the original using two examples and shown to be more efficient, more robust, and of almost identical accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1