稀疏 ILP 和超图多重打包/多重覆盖问题的更快算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-20 DOI:10.1007/s10898-024-01379-z
Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, Nikolai Zolotykh
{"title":"稀疏 ILP 和超图多重打包/多重覆盖问题的更快算法","authors":"Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, Nikolai Zolotykh","doi":"10.1007/s10898-024-01379-z","DOIUrl":null,"url":null,"abstract":"<p>In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in <span>\\({{\\,\\mathrm{\\mathcal {P}}\\,}}\\cap {{\\,\\mathrm{\\mathbb {Z}}\\,}}^n\\)</span>, assuming that <span>\\({{\\,\\mathrm{\\mathcal {P}}\\,}}\\)</span> is a polyhedron, defined by systems <span>\\(A x \\le b\\)</span> or <span>\\(Ax = b,\\, x \\ge 0\\)</span> with a sparse matrix <i>A</i>. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix <i>A</i> has bounded elements, our complexity bounds have the form <span>\\(s^{O(n)}\\)</span>, where <i>s</i> is the minimum between numbers of non-zeroes in columns and rows of <i>A</i>, respectively. For <span>\\(s = o\\bigl (\\log n \\bigr )\\)</span>, this bound outperforms the state-of-the-art ILP feasibility complexity bound <span>\\((\\log n)^{O(n)}\\)</span>, due to Reis &amp; Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For <span>\\(s = \\phi ^{o(\\log n)}\\)</span>, where <span>\\(\\phi \\)</span> denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound <span>\\(\\phi ^{O(n \\log n)}\\)</span>, due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for <i>Edge/Vertex Multi-Packing/Multi-Cover Problems</i> on graphs and hypergraphs. This framework consists of many different problems, such as the <i>Stable Multi-set</i>, <i>Vertex Multi-cover</i>, <i>Dominating Multi-set</i>, <i>Set Multi-cover</i>, <i>Multi-set Multi-cover</i>, and <i>Hypergraph Multi-matching</i> problems, which are natural generalizations of the standard <i>Stable Set</i>, <i>Vertex Cover</i>, <i>Dominating Set</i>, <i>Set Cover</i>, and <i>Maximum Matching</i> problems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems\",\"authors\":\"Dmitry Gribanov, Ivan Shumilov, Dmitry Malyshev, Nikolai Zolotykh\",\"doi\":\"10.1007/s10898-024-01379-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in <span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {P}}\\\\,}}\\\\cap {{\\\\,\\\\mathrm{\\\\mathbb {Z}}\\\\,}}^n\\\\)</span>, assuming that <span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {P}}\\\\,}}\\\\)</span> is a polyhedron, defined by systems <span>\\\\(A x \\\\le b\\\\)</span> or <span>\\\\(Ax = b,\\\\, x \\\\ge 0\\\\)</span> with a sparse matrix <i>A</i>. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix <i>A</i> has bounded elements, our complexity bounds have the form <span>\\\\(s^{O(n)}\\\\)</span>, where <i>s</i> is the minimum between numbers of non-zeroes in columns and rows of <i>A</i>, respectively. For <span>\\\\(s = o\\\\bigl (\\\\log n \\\\bigr )\\\\)</span>, this bound outperforms the state-of-the-art ILP feasibility complexity bound <span>\\\\((\\\\log n)^{O(n)}\\\\)</span>, due to Reis &amp; Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For <span>\\\\(s = \\\\phi ^{o(\\\\log n)}\\\\)</span>, where <span>\\\\(\\\\phi \\\\)</span> denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound <span>\\\\(\\\\phi ^{O(n \\\\log n)}\\\\)</span>, due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for <i>Edge/Vertex Multi-Packing/Multi-Cover Problems</i> on graphs and hypergraphs. This framework consists of many different problems, such as the <i>Stable Multi-set</i>, <i>Vertex Multi-cover</i>, <i>Dominating Multi-set</i>, <i>Set Multi-cover</i>, <i>Multi-set Multi-cover</i>, and <i>Hypergraph Multi-matching</i> problems, which are natural generalizations of the standard <i>Stable Set</i>, <i>Vertex Cover</i>, <i>Dominating Set</i>, <i>Set Cover</i>, and <i>Maximum Matching</i> problems.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01379-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01379-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了以下一般问题:检查可行性,统计可行解的数量,找到最优解,统计最优解在{{\,\mathrm{mathcal {P}\,}}\cap {{\、\假定 \({{\,\mathrm{mathcal {P}}\,}}) 是一个多面体,由系统 \(A x \le b\) 或 \(Ax = b,\, x \ge 0\) 与稀疏矩阵 A 定义。我们为这些问题开发了算法,这些算法在计算复杂度方面优于最先进的 ILP 算法和有界元素稀疏实例计数算法。假定矩阵 A 具有有界元素,我们的复杂度边界形式为 \(s^{O(n)}/),其中 s 分别是 A 的列和行中非零数之间的最小值。对于 \(s = o\bigl (\log n \bigr )\),这个边界优于最先进的 ILP 可行性复杂度边界 \((\log n)^{O(n)}\),由 Reis & Rothvoss(见:2023 IEEE 64th Annual symposium on foundations of computer science (FOCS),IEEE,第 974-988 页)提出。对于 \(s = \phi ^{o(\log n)}\), 其中 \(\phi \) 表示输入比特编码长度,它优于最先进的 ILP 计数复杂度约束 \(\phi ^{O(n \log n)}\), 这是由 Barvinok 等人提出的(in:566-572, https://doi.org/10.1109/SFCS.1993.366830, 1993)、Dyer、Kannan(Math Oper Res 22(3):545-549, https://doi.org/10.1287/moor.22.3.545, 1997)、Barvinok、Pommersheim(Algebr Combin 38:91-147, 1999)、Barvinok(收录于:欧洲数学协会,苏黎世联邦理工学院中心,2008)。我们利用已知方法和新方法,为图和超图上的边/顶点多重包装/多重覆盖问题开发了新的指数算法。这个框架由许多不同的问题组成,如稳定多集、顶点多覆盖、主宰多集、集合多覆盖、多集多覆盖和超图多匹配问题,它们是标准稳定集、顶点覆盖、主宰集、集合覆盖和最大匹配问题的自然概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems

In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in \({{\,\mathrm{\mathcal {P}}\,}}\cap {{\,\mathrm{\mathbb {Z}}\,}}^n\), assuming that \({{\,\mathrm{\mathcal {P}}\,}}\) is a polyhedron, defined by systems \(A x \le b\) or \(Ax = b,\, x \ge 0\) with a sparse matrix A. We develop algorithms for these problems that outperform state-of-the-art ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix A has bounded elements, our complexity bounds have the form \(s^{O(n)}\), where s is the minimum between numbers of non-zeroes in columns and rows of A, respectively. For \(s = o\bigl (\log n \bigr )\), this bound outperforms the state-of-the-art ILP feasibility complexity bound \((\log n)^{O(n)}\), due to Reis & Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988). For \(s = \phi ^{o(\log n)}\), where \(\phi \) denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound \(\phi ^{O(n \log n)}\), due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximum Matching problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1