{"title":"神经网络的潜力","authors":"Timothy T. Duignan*, ","doi":"10.1021/acsphyschemau.4c00004","DOIUrl":null,"url":null,"abstract":"<p >In the next half-century, physical chemistry will likely undergo a profound transformation, driven predominantly by the combination of recent advances in quantum chemistry and machine learning (ML). Specifically, equivariant neural network potentials (NNPs) are a breakthrough new tool that are already enabling us to simulate systems at the molecular scale with unprecedented accuracy and speed, relying on nothing but fundamental physical laws. The continued development of this approach will realize Paul Dirac’s 80-year-old vision of using quantum mechanics to unify physics with chemistry and providing invaluable tools for understanding materials science, biology, earth sciences, and beyond. The era of highly accurate and efficient first-principles molecular simulations will provide a wealth of training data that can be used to build automated computational methodologies, using tools such as diffusion models, for the design and optimization of systems at the molecular scale. Large language models (LLMs) will also evolve into increasingly indispensable tools for literature review, coding, idea generation, and scientific writing.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00004","citationCount":"0","resultStr":"{\"title\":\"The Potential of Neural Network Potentials\",\"authors\":\"Timothy T. Duignan*, \",\"doi\":\"10.1021/acsphyschemau.4c00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the next half-century, physical chemistry will likely undergo a profound transformation, driven predominantly by the combination of recent advances in quantum chemistry and machine learning (ML). Specifically, equivariant neural network potentials (NNPs) are a breakthrough new tool that are already enabling us to simulate systems at the molecular scale with unprecedented accuracy and speed, relying on nothing but fundamental physical laws. The continued development of this approach will realize Paul Dirac’s 80-year-old vision of using quantum mechanics to unify physics with chemistry and providing invaluable tools for understanding materials science, biology, earth sciences, and beyond. The era of highly accurate and efficient first-principles molecular simulations will provide a wealth of training data that can be used to build automated computational methodologies, using tools such as diffusion models, for the design and optimization of systems at the molecular scale. Large language models (LLMs) will also evolve into increasingly indispensable tools for literature review, coding, idea generation, and scientific writing.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In the next half-century, physical chemistry will likely undergo a profound transformation, driven predominantly by the combination of recent advances in quantum chemistry and machine learning (ML). Specifically, equivariant neural network potentials (NNPs) are a breakthrough new tool that are already enabling us to simulate systems at the molecular scale with unprecedented accuracy and speed, relying on nothing but fundamental physical laws. The continued development of this approach will realize Paul Dirac’s 80-year-old vision of using quantum mechanics to unify physics with chemistry and providing invaluable tools for understanding materials science, biology, earth sciences, and beyond. The era of highly accurate and efficient first-principles molecular simulations will provide a wealth of training data that can be used to build automated computational methodologies, using tools such as diffusion models, for the design and optimization of systems at the molecular scale. Large language models (LLMs) will also evolve into increasingly indispensable tools for literature review, coding, idea generation, and scientific writing.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis