利用重叠凸壳松弛求解非凸 MINLPs

IF 1.8 3区 数学 Q1 Mathematics Journal of Global Optimization Pub Date : 2024-03-22 DOI:10.1007/s10898-024-01376-2
Ouyang Wu, Pavlo Muts, Ivo Nowak, Eligius M. T. Hendrix
{"title":"利用重叠凸壳松弛求解非凸 MINLPs","authors":"Ouyang Wu, Pavlo Muts, Ivo Nowak, Eligius M. T. Hendrix","doi":"10.1007/s10898-024-01376-2","DOIUrl":null,"url":null,"abstract":"<p>We present a novel relaxation for general nonconvex sparse MINLP problems, called overlapping convex hull relaxation (CHR). It is defined by replacing all nonlinear constraint sets by their convex hulls. If the convex hulls are disjunctive, e.g. if the MINLP is block-separable, the CHR is equivalent to the convex hull relaxation obtained by (standard) column generation (CG). The CHR can be used for computing an initial lower bound in the root node of a branch-and-bound algorithm, or for computing a start vector for a local-search-based MINLP heuristic. We describe a dynamic block and column generation (DBCG) MINLP algorithm to generate the CHR by dynamically adding aggregated blocks. The idea of adding aggregated blocks in the CHR is similar to the well-known cutting plane approach. Numerical experiments on nonconvex MINLP instances show that the duality gap can be significantly reduced with the results of CHRs. DBCG is implemented as part of the CG-MINLP framework Decogo, see https://decogo.readthedocs.io/en/latest/index.html.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the use of overlapping convex hull relaxations to solve nonconvex MINLPs\",\"authors\":\"Ouyang Wu, Pavlo Muts, Ivo Nowak, Eligius M. T. Hendrix\",\"doi\":\"10.1007/s10898-024-01376-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel relaxation for general nonconvex sparse MINLP problems, called overlapping convex hull relaxation (CHR). It is defined by replacing all nonlinear constraint sets by their convex hulls. If the convex hulls are disjunctive, e.g. if the MINLP is block-separable, the CHR is equivalent to the convex hull relaxation obtained by (standard) column generation (CG). The CHR can be used for computing an initial lower bound in the root node of a branch-and-bound algorithm, or for computing a start vector for a local-search-based MINLP heuristic. We describe a dynamic block and column generation (DBCG) MINLP algorithm to generate the CHR by dynamically adding aggregated blocks. The idea of adding aggregated blocks in the CHR is similar to the well-known cutting plane approach. Numerical experiments on nonconvex MINLP instances show that the duality gap can be significantly reduced with the results of CHRs. DBCG is implemented as part of the CG-MINLP framework Decogo, see https://decogo.readthedocs.io/en/latest/index.html.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01376-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01376-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们针对一般非凸稀疏 MINLP 问题提出了一种新的松弛方法,称为重叠凸壳松弛(CHR)。它的定义是用凸壳代替所有非线性约束集。如果凸壳是析取的,例如,如果 MINLP 是块分割的,则 CHR 等同于通过(标准)列生成(CG)获得的凸壳松弛。CHR 可用于计算分支与边界算法根节点的初始下界,或计算基于局部搜索的 MINLP 启发式的起始向量。我们介绍了一种动态块和列生成(DBCG)MINLP 算法,通过动态添加聚合块来生成 CHR。在 CHR 中添加聚合块的想法类似于著名的切割面方法。非凸 MINLP 实例的数值实验表明,利用 CHR 的结果可以显著缩小对偶性差距。DBCG 是 CG-MINLP 框架 Decogo 的一部分,请参见 https://decogo.readthedocs.io/en/latest/index.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the use of overlapping convex hull relaxations to solve nonconvex MINLPs

We present a novel relaxation for general nonconvex sparse MINLP problems, called overlapping convex hull relaxation (CHR). It is defined by replacing all nonlinear constraint sets by their convex hulls. If the convex hulls are disjunctive, e.g. if the MINLP is block-separable, the CHR is equivalent to the convex hull relaxation obtained by (standard) column generation (CG). The CHR can be used for computing an initial lower bound in the root node of a branch-and-bound algorithm, or for computing a start vector for a local-search-based MINLP heuristic. We describe a dynamic block and column generation (DBCG) MINLP algorithm to generate the CHR by dynamically adding aggregated blocks. The idea of adding aggregated blocks in the CHR is similar to the well-known cutting plane approach. Numerical experiments on nonconvex MINLP instances show that the duality gap can be significantly reduced with the results of CHRs. DBCG is implemented as part of the CG-MINLP framework Decogo, see https://decogo.readthedocs.io/en/latest/index.html.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
期刊最新文献
Smoothing penalty approach for solving second-order cone complementarity problems Aircraft conflict resolution with trajectory recovery using mixed-integer programming Improved approximation algorithms for the k-path partition problem A QoS and sustainability-driven two-stage service composition method in cloud manufacturing: combining clustering and bi-objective optimization On convergence of a q-random coordinate constrained algorithm for non-convex problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1