Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*,
{"title":"推进生物分子电晕的原位分析:利用场流分馏技术的机遇与挑战","authors":"Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*, ","doi":"10.1021/acsbiomedchemau.4c00001","DOIUrl":null,"url":null,"abstract":"<p >The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. <i>In situ</i> analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for <i>in situ</i> analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for <i>in situ</i> analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for <i>in situ</i> analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00001","citationCount":"0","resultStr":"{\"title\":\"Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation\",\"authors\":\"Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*, \",\"doi\":\"10.1021/acsbiomedchemau.4c00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. <i>In situ</i> analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for <i>in situ</i> analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for <i>in situ</i> analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for <i>in situ</i> analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.4c00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.4c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation
The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. In situ analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for in situ analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for in situ analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for in situ analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.