Sanja Belić, Marija Petrin Miličević, Milan Vraneš, Aleksandar Tot, Nenad Janković, Nataša Radosavljević Stevanović, Jovana Nikolov, Nikolett Cakó Bagány, Slobodan Gadžurić
{"title":"深入了解 N-乙基戊酮药物与水和生物大分子的相互作用","authors":"Sanja Belić, Marija Petrin Miličević, Milan Vraneš, Aleksandar Tot, Nenad Janković, Nataša Radosavljević Stevanović, Jovana Nikolov, Nikolett Cakó Bagány, Slobodan Gadžurić","doi":"10.1007/s10953-024-01369-5","DOIUrl":null,"url":null,"abstract":"<div><p>One of the new synthetic cathinones that has a high tendency to replace ecstasy and other established synthetic drugs is <i>N-</i>ethylpentylone, (NEP), due to its high potency, stimulative, hedonic and hallucinatory effects. In order to examine the interactions of <i>N</i>-ethylpentylone, the apparent molar quantities, thermal expansion coefficient and the apparent molar volume at infinite dilution were calculated from the experimental measurements of the density of NEP aqueous solutions in different temperature and molality ranges, from <i>T</i> = (293.15 to 313.15) K and from <i>m</i> = (0.0590 to 0.0977) mol·kg<sup>−1</sup>, respectively. The taste of <i>N</i>-ethylpentylone was estimated by calculated values of apparent specific molar volume at infinite dilution and it was concluded that its taste in aqueous solutions is bitter. Also, using the spectrofluorimetric technique, an intermolecular deactivation of in situ formed ethidium bromide (EB) complex with DNA (EB-DNA) was investigated in the presence of <i>N</i>-ethylpentylone. Obtained results indicated good affinity and efficiency of NEP to substitute EB from the EB-DNA complex via intercalation mode. Using molecular docking, it was concluded that the binding energy obtained for NEP indicates its higher affinity to interact with DNA, compared to methamphetamine and amphetamine, but lower compared to ecstasy. The affinity of NEP to bind to bovine serum albumin (BSA) was also investigated and discussed. It is shown that <i>N</i>-ethylpentylone could be efficiently transported and distributed through the blood and cells.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"53 5","pages":"689 - 702"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into Interactions of N-Ethylpentylone Drug with Water and Biomacromolecules\",\"authors\":\"Sanja Belić, Marija Petrin Miličević, Milan Vraneš, Aleksandar Tot, Nenad Janković, Nataša Radosavljević Stevanović, Jovana Nikolov, Nikolett Cakó Bagány, Slobodan Gadžurić\",\"doi\":\"10.1007/s10953-024-01369-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the new synthetic cathinones that has a high tendency to replace ecstasy and other established synthetic drugs is <i>N-</i>ethylpentylone, (NEP), due to its high potency, stimulative, hedonic and hallucinatory effects. In order to examine the interactions of <i>N</i>-ethylpentylone, the apparent molar quantities, thermal expansion coefficient and the apparent molar volume at infinite dilution were calculated from the experimental measurements of the density of NEP aqueous solutions in different temperature and molality ranges, from <i>T</i> = (293.15 to 313.15) K and from <i>m</i> = (0.0590 to 0.0977) mol·kg<sup>−1</sup>, respectively. The taste of <i>N</i>-ethylpentylone was estimated by calculated values of apparent specific molar volume at infinite dilution and it was concluded that its taste in aqueous solutions is bitter. Also, using the spectrofluorimetric technique, an intermolecular deactivation of in situ formed ethidium bromide (EB) complex with DNA (EB-DNA) was investigated in the presence of <i>N</i>-ethylpentylone. Obtained results indicated good affinity and efficiency of NEP to substitute EB from the EB-DNA complex via intercalation mode. Using molecular docking, it was concluded that the binding energy obtained for NEP indicates its higher affinity to interact with DNA, compared to methamphetamine and amphetamine, but lower compared to ecstasy. The affinity of NEP to bind to bovine serum albumin (BSA) was also investigated and discussed. It is shown that <i>N</i>-ethylpentylone could be efficiently transported and distributed through the blood and cells.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"53 5\",\"pages\":\"689 - 702\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01369-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01369-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
N-ethylpentylone (NEP)是一种新型合成卡西酮,因其药效高、刺激性强、具有享乐和致幻作用,极有可能取代摇头丸和其他成熟的合成药物。为了研究 N-ethylpentylone 的相互作用,通过实验测量 NEP 水溶液在不同温度和摩尔数范围(T = (293.15 至 313.15) K 和 m = (0.0590 至 0.0977) mol-kg-1 )内的密度,分别计算了表观摩尔量、热膨胀系数和无限稀释时的表观摩尔体积。通过计算无限稀释时的表观比摩尔体积值,对 N-乙基戊酮的味道进行了估计,得出的结论是其在水溶液中的味道是苦的。此外,还利用分光荧光技术研究了在 N-乙基戊酮存在下,原位形成的溴化乙锭(EB)与 DNA 复合物(EB-DNA)的分子间失活情况。研究结果表明,NEP 通过插层模式从 EB-DNA 复合物中取代 EB 具有良好的亲和力和效率。通过分子对接得出的结论是,与甲基苯丙胺和苯丙胺相比,NEP 的结合能表明其与 DNA 的相互作用亲和力较高,但与摇头丸相比则较低。还研究并讨论了 NEP 与牛血清白蛋白(BSA)结合的亲和力。研究表明,N-乙基戊酮可以通过血液和细胞有效地运输和分布。
Insights into Interactions of N-Ethylpentylone Drug with Water and Biomacromolecules
One of the new synthetic cathinones that has a high tendency to replace ecstasy and other established synthetic drugs is N-ethylpentylone, (NEP), due to its high potency, stimulative, hedonic and hallucinatory effects. In order to examine the interactions of N-ethylpentylone, the apparent molar quantities, thermal expansion coefficient and the apparent molar volume at infinite dilution were calculated from the experimental measurements of the density of NEP aqueous solutions in different temperature and molality ranges, from T = (293.15 to 313.15) K and from m = (0.0590 to 0.0977) mol·kg−1, respectively. The taste of N-ethylpentylone was estimated by calculated values of apparent specific molar volume at infinite dilution and it was concluded that its taste in aqueous solutions is bitter. Also, using the spectrofluorimetric technique, an intermolecular deactivation of in situ formed ethidium bromide (EB) complex with DNA (EB-DNA) was investigated in the presence of N-ethylpentylone. Obtained results indicated good affinity and efficiency of NEP to substitute EB from the EB-DNA complex via intercalation mode. Using molecular docking, it was concluded that the binding energy obtained for NEP indicates its higher affinity to interact with DNA, compared to methamphetamine and amphetamine, but lower compared to ecstasy. The affinity of NEP to bind to bovine serum albumin (BSA) was also investigated and discussed. It is shown that N-ethylpentylone could be efficiently transported and distributed through the blood and cells.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.