{"title":"粘性液体薄膜流上由风产生的稳定重力-毛细管波","authors":"Y. Meng, D. T. Papageorgiou, J.-M. Vanden-Broeck","doi":"10.1137/23m1586318","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 477-496, April 2024. <br/> Abstract. Steady gravity-capillary periodic waves on the surface of a thin viscous liquid film supported by an air stream on an inclined wall are investigated. Based on lubrication approximation and thin air-foil theory, this problem is reduced to an integro-differential equation. The small-amplitude analysis is carried out to obtain two analytical solutions up to the second order. Numerical computation shows there exist two distinct primary bifurcation branches starting from infinitesimal waves, which approach solitary wave configuration in the long-wave limit when the values of physical parameters are above certain thresholds. New families of solutions manifest themselves either as secondary bifurcation occurring on primary branches or as isolated solution branches. The limiting configurations of the primary solution branches with the increase of two parameters are studied in two different cases, where one and two limiting configurations are obtained, respectively. For the latter case, the approximation of the configurations is given.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady Wind-Generated Gravity-Capillary Waves on Viscous Liquid Film Flows\",\"authors\":\"Y. Meng, D. T. Papageorgiou, J.-M. Vanden-Broeck\",\"doi\":\"10.1137/23m1586318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 477-496, April 2024. <br/> Abstract. Steady gravity-capillary periodic waves on the surface of a thin viscous liquid film supported by an air stream on an inclined wall are investigated. Based on lubrication approximation and thin air-foil theory, this problem is reduced to an integro-differential equation. The small-amplitude analysis is carried out to obtain two analytical solutions up to the second order. Numerical computation shows there exist two distinct primary bifurcation branches starting from infinitesimal waves, which approach solitary wave configuration in the long-wave limit when the values of physical parameters are above certain thresholds. New families of solutions manifest themselves either as secondary bifurcation occurring on primary branches or as isolated solution branches. The limiting configurations of the primary solution branches with the increase of two parameters are studied in two different cases, where one and two limiting configurations are obtained, respectively. For the latter case, the approximation of the configurations is given.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1586318\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1586318","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Steady Wind-Generated Gravity-Capillary Waves on Viscous Liquid Film Flows
SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 477-496, April 2024. Abstract. Steady gravity-capillary periodic waves on the surface of a thin viscous liquid film supported by an air stream on an inclined wall are investigated. Based on lubrication approximation and thin air-foil theory, this problem is reduced to an integro-differential equation. The small-amplitude analysis is carried out to obtain two analytical solutions up to the second order. Numerical computation shows there exist two distinct primary bifurcation branches starting from infinitesimal waves, which approach solitary wave configuration in the long-wave limit when the values of physical parameters are above certain thresholds. New families of solutions manifest themselves either as secondary bifurcation occurring on primary branches or as isolated solution branches. The limiting configurations of the primary solution branches with the increase of two parameters are studied in two different cases, where one and two limiting configurations are obtained, respectively. For the latter case, the approximation of the configurations is given.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.