{"title":"太阳能光伏发电在净零增长中的作用:国际制造商和政策分析","authors":"Arcipowska Aleksandra, Blanco Perez Sara, Jakimów Małgorzata, Baldassarre Brian, Polverini Davide, Cabrera Miguel","doi":"10.1002/pip.3797","DOIUrl":null,"url":null,"abstract":"<p>In May 2022, the European Commission adopted a new European Union (EU) Solar Energy Strategy [1] aiming to ensure that solar energy achieves its full potential in helping to meet the European Green Deal's climate and energy targets. A goal of the strategy is to reach nearly 600 GW of installed solar photovoltaics (PV) capacity by 2030. While Europe is a pioneer in the definition of new policy requirements to ensure the circularity and sustainability of PV products, its manufacturing capabilities are limited. The EU mostly imports PV modules from China, which for the last decade has remained the global leader in PV manufacturing across the supply chain. This article aims to provide insight into the solar PV industry and the surrounding policy context, focusing on the manufacturing phase and its climate impact. It provides a comparative overview of the key players in the European and Chinese PV markets with an overview of the whole supply chain (i.e. production of polysilicon, cells, wafers and modules). Having in mind the net-zero commitments across the globe, and a central role of the solar PV in the energy transition, the demand for PV products is expected to grow exponentially in the next decades. With this in mind, the authors look into environmental impacts from the PV manufacturing. A simplified analysis concludes on the suitability of the PV manufacturing process today and indicates the opportunities for the net-zero transition in the future. While the focus is on the carbon impacts of the solar PV industry, the authors also identify other relevant aspects (such as circularity), laying the ground for a future research.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"607-622"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3797","citationCount":"0","resultStr":"{\"title\":\"Role of solar PV in net-zero growth: An analysis of international manufacturers and policies\",\"authors\":\"Arcipowska Aleksandra, Blanco Perez Sara, Jakimów Małgorzata, Baldassarre Brian, Polverini Davide, Cabrera Miguel\",\"doi\":\"10.1002/pip.3797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In May 2022, the European Commission adopted a new European Union (EU) Solar Energy Strategy [1] aiming to ensure that solar energy achieves its full potential in helping to meet the European Green Deal's climate and energy targets. A goal of the strategy is to reach nearly 600 GW of installed solar photovoltaics (PV) capacity by 2030. While Europe is a pioneer in the definition of new policy requirements to ensure the circularity and sustainability of PV products, its manufacturing capabilities are limited. The EU mostly imports PV modules from China, which for the last decade has remained the global leader in PV manufacturing across the supply chain. This article aims to provide insight into the solar PV industry and the surrounding policy context, focusing on the manufacturing phase and its climate impact. It provides a comparative overview of the key players in the European and Chinese PV markets with an overview of the whole supply chain (i.e. production of polysilicon, cells, wafers and modules). Having in mind the net-zero commitments across the globe, and a central role of the solar PV in the energy transition, the demand for PV products is expected to grow exponentially in the next decades. With this in mind, the authors look into environmental impacts from the PV manufacturing. A simplified analysis concludes on the suitability of the PV manufacturing process today and indicates the opportunities for the net-zero transition in the future. While the focus is on the carbon impacts of the solar PV industry, the authors also identify other relevant aspects (such as circularity), laying the ground for a future research.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 9\",\"pages\":\"607-622\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3797\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3797\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3797","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Role of solar PV in net-zero growth: An analysis of international manufacturers and policies
In May 2022, the European Commission adopted a new European Union (EU) Solar Energy Strategy [1] aiming to ensure that solar energy achieves its full potential in helping to meet the European Green Deal's climate and energy targets. A goal of the strategy is to reach nearly 600 GW of installed solar photovoltaics (PV) capacity by 2030. While Europe is a pioneer in the definition of new policy requirements to ensure the circularity and sustainability of PV products, its manufacturing capabilities are limited. The EU mostly imports PV modules from China, which for the last decade has remained the global leader in PV manufacturing across the supply chain. This article aims to provide insight into the solar PV industry and the surrounding policy context, focusing on the manufacturing phase and its climate impact. It provides a comparative overview of the key players in the European and Chinese PV markets with an overview of the whole supply chain (i.e. production of polysilicon, cells, wafers and modules). Having in mind the net-zero commitments across the globe, and a central role of the solar PV in the energy transition, the demand for PV products is expected to grow exponentially in the next decades. With this in mind, the authors look into environmental impacts from the PV manufacturing. A simplified analysis concludes on the suitability of the PV manufacturing process today and indicates the opportunities for the net-zero transition in the future. While the focus is on the carbon impacts of the solar PV industry, the authors also identify other relevant aspects (such as circularity), laying the ground for a future research.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.