M. M. Housseiny, E. M. Fawzy, M. A. Abu-Tahon, W. E. Abdallah, O. M. El-Mahdy
{"title":"绿色方法:柠檬青霉 AUMC 11627 产生的外多糖介导的银纳米粒子的特性、抗菌、抗肿瘤和解毒潜力","authors":"M. M. Housseiny, E. M. Fawzy, M. A. Abu-Tahon, W. E. Abdallah, O. M. El-Mahdy","doi":"10.1134/s0026261723601525","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Developing a green effective approach and a suitable applicative process for increasing the efficiency of microbial nanomaterial synthesis is an emerging prospect for future industrial production. This was accomplished by employing exopolysaccharides (EPS) to obtain potent silver nanoparticles using <i>Penicillium citrinum</i> (EPS−AgNPs) as a reducing and stabilizing agent. EPS−AgNPs were analyzed by UV–Vis spectrophotometry, which showed a peak of absorbance at 420 nm. TEM was used to determine the morphology of the EPS−AgNPs and showed that the particles were 14.4 nm in size, well dispersed, and spherical. The stabilization of (EPS−AgNPs) was caused by amides and amines groups, which were confirmed via Fourier transform infrared. Moreover, the EPS−AgNPs showed excellent antibacterial activities against various human pathogenic bacterial strains in comparison to the potent antibiotics. Additionally, EPS−AgNPs were examined for their anticancer properties. Furthermore, EPS−AgNPs had a significant impact on the ochratoxin production. Finally, our findings confirm the benefits of adopting a bio green technique for the synthesis of antibacterial and detoxifying nanoparticles, which are predicted to provide new pathways for various cancers and infectious microbial diseases treatment.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Approach: Characterization, Antibacterial, Antitumor and Detoxification Potentials of Exopolysaccharides-Mediated Silver Nanoparticles Produced by Penicillium citrinum AUMC 11627\",\"authors\":\"M. M. Housseiny, E. M. Fawzy, M. A. Abu-Tahon, W. E. Abdallah, O. M. El-Mahdy\",\"doi\":\"10.1134/s0026261723601525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Developing a green effective approach and a suitable applicative process for increasing the efficiency of microbial nanomaterial synthesis is an emerging prospect for future industrial production. This was accomplished by employing exopolysaccharides (EPS) to obtain potent silver nanoparticles using <i>Penicillium citrinum</i> (EPS−AgNPs) as a reducing and stabilizing agent. EPS−AgNPs were analyzed by UV–Vis spectrophotometry, which showed a peak of absorbance at 420 nm. TEM was used to determine the morphology of the EPS−AgNPs and showed that the particles were 14.4 nm in size, well dispersed, and spherical. The stabilization of (EPS−AgNPs) was caused by amides and amines groups, which were confirmed via Fourier transform infrared. Moreover, the EPS−AgNPs showed excellent antibacterial activities against various human pathogenic bacterial strains in comparison to the potent antibiotics. Additionally, EPS−AgNPs were examined for their anticancer properties. Furthermore, EPS−AgNPs had a significant impact on the ochratoxin production. Finally, our findings confirm the benefits of adopting a bio green technique for the synthesis of antibacterial and detoxifying nanoparticles, which are predicted to provide new pathways for various cancers and infectious microbial diseases treatment.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026261723601525\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026261723601525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Green Approach: Characterization, Antibacterial, Antitumor and Detoxification Potentials of Exopolysaccharides-Mediated Silver Nanoparticles Produced by Penicillium citrinum AUMC 11627
Abstract
Developing a green effective approach and a suitable applicative process for increasing the efficiency of microbial nanomaterial synthesis is an emerging prospect for future industrial production. This was accomplished by employing exopolysaccharides (EPS) to obtain potent silver nanoparticles using Penicillium citrinum (EPS−AgNPs) as a reducing and stabilizing agent. EPS−AgNPs were analyzed by UV–Vis spectrophotometry, which showed a peak of absorbance at 420 nm. TEM was used to determine the morphology of the EPS−AgNPs and showed that the particles were 14.4 nm in size, well dispersed, and spherical. The stabilization of (EPS−AgNPs) was caused by amides and amines groups, which were confirmed via Fourier transform infrared. Moreover, the EPS−AgNPs showed excellent antibacterial activities against various human pathogenic bacterial strains in comparison to the potent antibiotics. Additionally, EPS−AgNPs were examined for their anticancer properties. Furthermore, EPS−AgNPs had a significant impact on the ochratoxin production. Finally, our findings confirm the benefits of adopting a bio green technique for the synthesis of antibacterial and detoxifying nanoparticles, which are predicted to provide new pathways for various cancers and infectious microbial diseases treatment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.