{"title":"优化天然橡胶泡沫:发泡剂含量和加工条件对蜂窝结构和机械性能的影响","authors":"Ehsan Rostami-Tapeh-Esmaeil, Hibal Ahmad, Hossein Kazemi, Denis Rodrigue","doi":"10.1177/02624893241241680","DOIUrl":null,"url":null,"abstract":"In the past decades, natural rubber (NR) foams became popular in the automotive, construction and aerospace industries because of their lightweight, flexibility and shock-absorbing properties. The selection of optimal formulation and processing parameters is critical to produce foam with specific properties depending on the application. In this study, the effect of foaming agent concentration, foaming temperature and time on the morphological and mechanical properties of NR foams was investigated. First, increasing the foaming agent content from 5 to 9 phr (parts per hundred rubber) increased the cell size (16%), while decreasing the compression modulus (28%). In the second part, increasing the foaming temperature (145 to 155°C) resulted in larger cell size (163%); while decreasing the cell density (28%), compression modulus (2%), and hardness (1%). In the third part, increasing the foaming time (25 to 45 min) led to smaller cell size (63%) combined with higher cell density (100%), compression modulus (16%), and hardness (3%). Based on all the results obtained, the best NR foam was obtained with 7 phr of foaming agent and produced at 150°C for 35 min leading to superior morphological and mechanical performance: the smallest cell size (25 µm) and the most uniform cell size distribution ( Đ = 1.03) generating the highest compression modulus (3.36 MPa). Finally, the experimental compression results were combined to build a nonlinear regression model to optimize the formulation and processing conditions leading to 6.5 phr of OBSH molded at 150°C for 36 min. The model showed good agreement with a validation test with less than 2% deviation observed for both compression modulus and strength.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"15 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of natural rubber foams: Effect of foaming agent content and processing conditions on the cellular structure and mechanical properties\",\"authors\":\"Ehsan Rostami-Tapeh-Esmaeil, Hibal Ahmad, Hossein Kazemi, Denis Rodrigue\",\"doi\":\"10.1177/02624893241241680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decades, natural rubber (NR) foams became popular in the automotive, construction and aerospace industries because of their lightweight, flexibility and shock-absorbing properties. The selection of optimal formulation and processing parameters is critical to produce foam with specific properties depending on the application. In this study, the effect of foaming agent concentration, foaming temperature and time on the morphological and mechanical properties of NR foams was investigated. First, increasing the foaming agent content from 5 to 9 phr (parts per hundred rubber) increased the cell size (16%), while decreasing the compression modulus (28%). In the second part, increasing the foaming temperature (145 to 155°C) resulted in larger cell size (163%); while decreasing the cell density (28%), compression modulus (2%), and hardness (1%). In the third part, increasing the foaming time (25 to 45 min) led to smaller cell size (63%) combined with higher cell density (100%), compression modulus (16%), and hardness (3%). Based on all the results obtained, the best NR foam was obtained with 7 phr of foaming agent and produced at 150°C for 35 min leading to superior morphological and mechanical performance: the smallest cell size (25 µm) and the most uniform cell size distribution ( Đ = 1.03) generating the highest compression modulus (3.36 MPa). Finally, the experimental compression results were combined to build a nonlinear regression model to optimize the formulation and processing conditions leading to 6.5 phr of OBSH molded at 150°C for 36 min. The model showed good agreement with a validation test with less than 2% deviation observed for both compression modulus and strength.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893241241680\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893241241680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Optimization of natural rubber foams: Effect of foaming agent content and processing conditions on the cellular structure and mechanical properties
In the past decades, natural rubber (NR) foams became popular in the automotive, construction and aerospace industries because of their lightweight, flexibility and shock-absorbing properties. The selection of optimal formulation and processing parameters is critical to produce foam with specific properties depending on the application. In this study, the effect of foaming agent concentration, foaming temperature and time on the morphological and mechanical properties of NR foams was investigated. First, increasing the foaming agent content from 5 to 9 phr (parts per hundred rubber) increased the cell size (16%), while decreasing the compression modulus (28%). In the second part, increasing the foaming temperature (145 to 155°C) resulted in larger cell size (163%); while decreasing the cell density (28%), compression modulus (2%), and hardness (1%). In the third part, increasing the foaming time (25 to 45 min) led to smaller cell size (63%) combined with higher cell density (100%), compression modulus (16%), and hardness (3%). Based on all the results obtained, the best NR foam was obtained with 7 phr of foaming agent and produced at 150°C for 35 min leading to superior morphological and mechanical performance: the smallest cell size (25 µm) and the most uniform cell size distribution ( Đ = 1.03) generating the highest compression modulus (3.36 MPa). Finally, the experimental compression results were combined to build a nonlinear regression model to optimize the formulation and processing conditions leading to 6.5 phr of OBSH molded at 150°C for 36 min. The model showed good agreement with a validation test with less than 2% deviation observed for both compression modulus and strength.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.