协方差异质性下高维均值向量的多样本假设检验

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2024-03-22 DOI:10.1007/s10463-024-00896-8
Lixiu Wu, Jiang Hu
{"title":"协方差异质性下高维均值向量的多样本假设检验","authors":"Lixiu Wu,&nbsp;Jiang Hu","doi":"10.1007/s10463-024-00896-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on the hypothesis testing problem of the mean vectors of high-dimensional data in the multi-sample case. We propose two maximum-type statistics and apply a parametric bootstrap technique to compute the critical values. Unlike previous hypothesis testing methods that heavily depend on the structural assumptions of the unknown covariance matrix, the proposed methods accommodate a general covariance structure. Additionally, we introduce screening-based testing procedures to enhance the power of our tests. These test procedures do not require the use of approximate limiting distributions for the test statistics. Finally, we obtain and verify the theoretical properties through simulation studies.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity\",\"authors\":\"Lixiu Wu,&nbsp;Jiang Hu\",\"doi\":\"10.1007/s10463-024-00896-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on the hypothesis testing problem of the mean vectors of high-dimensional data in the multi-sample case. We propose two maximum-type statistics and apply a parametric bootstrap technique to compute the critical values. Unlike previous hypothesis testing methods that heavily depend on the structural assumptions of the unknown covariance matrix, the proposed methods accommodate a general covariance structure. Additionally, we introduce screening-based testing procedures to enhance the power of our tests. These test procedures do not require the use of approximate limiting distributions for the test statistics. Finally, we obtain and verify the theoretical properties through simulation studies.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-024-00896-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00896-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究多样本情况下高维数据均值向量的假设检验问题。我们提出了两种最大类型统计量,并应用参数自举技术计算临界值。以往的假设检验方法在很大程度上依赖于未知协方差矩阵的结构假设,与之不同的是,我们提出的方法适用于一般的协方差结构。此外,我们还引入了基于筛选的测试程序,以增强我们的测试能力。这些检验程序无需使用检验统计量的近似极限分布。最后,我们通过模拟研究获得并验证了理论特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity

In this paper, we focus on the hypothesis testing problem of the mean vectors of high-dimensional data in the multi-sample case. We propose two maximum-type statistics and apply a parametric bootstrap technique to compute the critical values. Unlike previous hypothesis testing methods that heavily depend on the structural assumptions of the unknown covariance matrix, the proposed methods accommodate a general covariance structure. Additionally, we introduce screening-based testing procedures to enhance the power of our tests. These test procedures do not require the use of approximate limiting distributions for the test statistics. Finally, we obtain and verify the theoretical properties through simulation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1