{"title":"根据科学模式中的程序性和概念性知识重新设计一年级物理实验课程","authors":"C. F. J. Pols, P. J. J. M. Dekkers","doi":"10.1103/physrevphyseducres.20.010117","DOIUrl":null,"url":null,"abstract":"[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] Acknowledgement of the limited learning outcomes in our first-year physics lab course, strikingly similar to the observed and reported issues in literature, incited renewal of the course with a focus on developing students’ ability to engage in experimental physics research. The <i>procedural and conceptual knowledge (PACKS) model</i>—addressing different types of knowledge required for scientific investigation—was used as a “guide” in the transformation of the course. This educational design research study—distinguishing three stages—describes our approach in transforming the course and provides theoretical insights and practical solutions through the combined study of both the process of learning and the means that support that process. The merits and trade-offs of our approach and the effectiveness of the course transformation are evaluated through surveys, interviews, and assessment of students’ inquiry skills. The findings provide insights into the application of the PACKS model and its effectiveness in facilitating students’ development of physics inquiry abilities. The results reveal an alignment between perceived, attained and intended learning goals. The self-conceived experiment at the end of the course showcases students’ successful integration of the targeted knowledge types, previously addressed in isolated “preparatory” activities. We argue that the PACKS-model and the design principles are useful attributes when transforming a traditional lab activity, but also specify the limitations.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redesigning a first year physics lab course on the basis of the procedural and conceptual knowledge in science model\",\"authors\":\"C. F. J. Pols, P. J. J. M. Dekkers\",\"doi\":\"10.1103/physrevphyseducres.20.010117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] Acknowledgement of the limited learning outcomes in our first-year physics lab course, strikingly similar to the observed and reported issues in literature, incited renewal of the course with a focus on developing students’ ability to engage in experimental physics research. The <i>procedural and conceptual knowledge (PACKS) model</i>—addressing different types of knowledge required for scientific investigation—was used as a “guide” in the transformation of the course. This educational design research study—distinguishing three stages—describes our approach in transforming the course and provides theoretical insights and practical solutions through the combined study of both the process of learning and the means that support that process. The merits and trade-offs of our approach and the effectiveness of the course transformation are evaluated through surveys, interviews, and assessment of students’ inquiry skills. The findings provide insights into the application of the PACKS model and its effectiveness in facilitating students’ development of physics inquiry abilities. The results reveal an alignment between perceived, attained and intended learning goals. The self-conceived experiment at the end of the course showcases students’ successful integration of the targeted knowledge types, previously addressed in isolated “preparatory” activities. We argue that the PACKS-model and the design principles are useful attributes when transforming a traditional lab activity, but also specify the limitations.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.20.010117\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010117","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Redesigning a first year physics lab course on the basis of the procedural and conceptual knowledge in science model
[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] Acknowledgement of the limited learning outcomes in our first-year physics lab course, strikingly similar to the observed and reported issues in literature, incited renewal of the course with a focus on developing students’ ability to engage in experimental physics research. The procedural and conceptual knowledge (PACKS) model—addressing different types of knowledge required for scientific investigation—was used as a “guide” in the transformation of the course. This educational design research study—distinguishing three stages—describes our approach in transforming the course and provides theoretical insights and practical solutions through the combined study of both the process of learning and the means that support that process. The merits and trade-offs of our approach and the effectiveness of the course transformation are evaluated through surveys, interviews, and assessment of students’ inquiry skills. The findings provide insights into the application of the PACKS model and its effectiveness in facilitating students’ development of physics inquiry abilities. The results reveal an alignment between perceived, attained and intended learning goals. The self-conceived experiment at the end of the course showcases students’ successful integration of the targeted knowledge types, previously addressed in isolated “preparatory” activities. We argue that the PACKS-model and the design principles are useful attributes when transforming a traditional lab activity, but also specify the limitations.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development