P2X7 可调控脊髓损伤后成年小白鼠上皮神经胶质细胞的增殖。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-15 Epub Date: 2024-04-11 DOI:10.1242/bio.060270
Eva E Stefanova, Julian Vincent T Dychiao, Mavis C Chinn, Matin Borhani, Angela L Scott
{"title":"P2X7 可调控脊髓损伤后成年小白鼠上皮神经胶质细胞的增殖。","authors":"Eva E Stefanova, Julian Vincent T Dychiao, Mavis C Chinn, Matin Borhani, Angela L Scott","doi":"10.1242/bio.060270","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to mammals, zebrafish undergo successful neural regeneration following spinal cord injury. Spinal cord ependymo-radial glia (ERG) undergo injury-induced proliferation and neuronal differentiation to replace damaged cells and restore motor function. However, the molecular cues driving these processes remain elusive. Here, we demonstrate that the evolutionarily conserved P2X7 receptors are widely distributed on neurons and ERG within the zebrafish spinal cord. At the protein level, the P2X7 receptor expressed in zebrafish is a truncated splice variant of the full-length variant found in mammals. The protein expression of this 50 kDa isoform was significantly downregulated at 7 days post-injury (dpi) but returned to basal levels at 14 dpi when compared to naïve controls. Pharmacological activation of P2X7 following SCI resulted in a greater number of proliferating cells around the central canal by 7 dpi but did not affect neuronal differentiation at 14 dpi. Our findings suggest that unlike in mammals, P2X7 signaling may not play a maladaptive role following SCI in adult zebrafish and may also work to curb the proliferative response of ERG following injury.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033521/pdf/","citationCount":"0","resultStr":"{\"title\":\"P2X7 regulates ependymo-radial glial cell proliferation in adult Danio rerio following spinal cord injury.\",\"authors\":\"Eva E Stefanova, Julian Vincent T Dychiao, Mavis C Chinn, Matin Borhani, Angela L Scott\",\"doi\":\"10.1242/bio.060270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contrast to mammals, zebrafish undergo successful neural regeneration following spinal cord injury. Spinal cord ependymo-radial glia (ERG) undergo injury-induced proliferation and neuronal differentiation to replace damaged cells and restore motor function. However, the molecular cues driving these processes remain elusive. Here, we demonstrate that the evolutionarily conserved P2X7 receptors are widely distributed on neurons and ERG within the zebrafish spinal cord. At the protein level, the P2X7 receptor expressed in zebrafish is a truncated splice variant of the full-length variant found in mammals. The protein expression of this 50 kDa isoform was significantly downregulated at 7 days post-injury (dpi) but returned to basal levels at 14 dpi when compared to naïve controls. Pharmacological activation of P2X7 following SCI resulted in a greater number of proliferating cells around the central canal by 7 dpi but did not affect neuronal differentiation at 14 dpi. Our findings suggest that unlike in mammals, P2X7 signaling may not play a maladaptive role following SCI in adult zebrafish and may also work to curb the proliferative response of ERG following injury.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/bio.060270\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与哺乳动物不同,斑马鱼在脊髓损伤后能成功实现神经再生。脊髓上皮神经胶质细胞(ERG)在损伤诱导下发生增殖和神经元分化,以替代受损细胞并恢复运动功能。然而,驱动这些过程的分子线索仍然难以捉摸。在这里,我们证明了进化保守的 P2X7 受体广泛分布于斑马鱼脊髓内的神经元和 ERG 上。在蛋白质水平上,斑马鱼体内表达的 P2X7 受体是哺乳动物体内发现的全长受体的截短剪接变体。与天真对照组相比,这种 50 kDa 同工型的蛋白表达在损伤后 7 天(dpi)显著下调,但在 14 dpi 时恢复到基础水平。脊髓损伤后药理激活 P2X7 会导致中央管周围的增殖细胞数量在 7 dpi 时增加,但不会影响 14 dpi 时的神经元分化。我们的研究结果表明,与哺乳动物不同,P2X7 信号传导在成年斑马鱼接受 SCI 损伤后可能不会发挥不良作用,还可能抑制 ERG 损伤后的增殖反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P2X7 regulates ependymo-radial glial cell proliferation in adult Danio rerio following spinal cord injury.

In contrast to mammals, zebrafish undergo successful neural regeneration following spinal cord injury. Spinal cord ependymo-radial glia (ERG) undergo injury-induced proliferation and neuronal differentiation to replace damaged cells and restore motor function. However, the molecular cues driving these processes remain elusive. Here, we demonstrate that the evolutionarily conserved P2X7 receptors are widely distributed on neurons and ERG within the zebrafish spinal cord. At the protein level, the P2X7 receptor expressed in zebrafish is a truncated splice variant of the full-length variant found in mammals. The protein expression of this 50 kDa isoform was significantly downregulated at 7 days post-injury (dpi) but returned to basal levels at 14 dpi when compared to naïve controls. Pharmacological activation of P2X7 following SCI resulted in a greater number of proliferating cells around the central canal by 7 dpi but did not affect neuronal differentiation at 14 dpi. Our findings suggest that unlike in mammals, P2X7 signaling may not play a maladaptive role following SCI in adult zebrafish and may also work to curb the proliferative response of ERG following injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1