利用 Gewald、Strecker 和 Groebke-Blackburn-Bienaymé (GBB) 反应合成抗菌剂衍生物的趋势。

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2024-01-01 DOI:10.2174/0115734064282699240315042428
Kaushal Naithani, Subhendu Bhowmik
{"title":"利用 Gewald、Strecker 和 Groebke-Blackburn-Bienaymé (GBB) 反应合成抗菌剂衍生物的趋势。","authors":"Kaushal Naithani, Subhendu Bhowmik","doi":"10.2174/0115734064282699240315042428","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multicomponent reactions are highly useful in synthesizing natural products and bioactive molecules. Out of several MCRs, although utilized widely, some remain neglected in review articles. The Gewald and Groebke-Blackburn-Bienaymé (GBB) reactions are two such reactions. This comprehensive review assimilates applications of Gewald and Groebke-Blackburn- Bienayme reactions in synthesizing novel antimicrobial agents. It presents the antimicrobial properties of the synthesized molecules, providing an overview of their potential druggability.</p><p><strong>Objective: </strong>Developing novel antimicrobial agents is the need of the hour. Toward this objective, the scientific community is developing new methods for constructing novel architectures with potential antimicrobial properties. This review will showcase the usefulness of the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions in synthesizing antimicrobial molecules.</p><p><strong>Methods: </strong>The articles are searched by using the Sci-finder search tool and summarize the chemistry of their synthesis and antimicrobial evaluation of the molecules.</p><p><strong>Results: </strong>This review focuses on synthesizing antimicrobial molecules using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions. The antimicrobial activities of the synthesized molecules are also summarized in tables.</p><p><strong>Conclusion: </strong>This review will briefly overview the application of the Gewald, Strecker, and Groebke- Blackburn-Bienaymé (GBB) reactions in synthesizing novel antimicrobial molecules. It contains several molecules with promising activity against resistant and non-resistant microbial strains. These promising molecules could be studied further to develop novel antibiotics.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in the Synthesis of Antimicrobial Derivatives by using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) Reactions.\",\"authors\":\"Kaushal Naithani, Subhendu Bhowmik\",\"doi\":\"10.2174/0115734064282699240315042428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multicomponent reactions are highly useful in synthesizing natural products and bioactive molecules. Out of several MCRs, although utilized widely, some remain neglected in review articles. The Gewald and Groebke-Blackburn-Bienaymé (GBB) reactions are two such reactions. This comprehensive review assimilates applications of Gewald and Groebke-Blackburn- Bienayme reactions in synthesizing novel antimicrobial agents. It presents the antimicrobial properties of the synthesized molecules, providing an overview of their potential druggability.</p><p><strong>Objective: </strong>Developing novel antimicrobial agents is the need of the hour. Toward this objective, the scientific community is developing new methods for constructing novel architectures with potential antimicrobial properties. This review will showcase the usefulness of the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions in synthesizing antimicrobial molecules.</p><p><strong>Methods: </strong>The articles are searched by using the Sci-finder search tool and summarize the chemistry of their synthesis and antimicrobial evaluation of the molecules.</p><p><strong>Results: </strong>This review focuses on synthesizing antimicrobial molecules using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions. The antimicrobial activities of the synthesized molecules are also summarized in tables.</p><p><strong>Conclusion: </strong>This review will briefly overview the application of the Gewald, Strecker, and Groebke- Blackburn-Bienaymé (GBB) reactions in synthesizing novel antimicrobial molecules. It contains several molecules with promising activity against resistant and non-resistant microbial strains. These promising molecules could be studied further to develop novel antibiotics.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064282699240315042428\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064282699240315042428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:多组分反应在合成天然产物和生物活性分子方面非常有用。在几种多组分反应中,虽然应用广泛,但有些反应在综述文章中仍被忽视。Gewald 反应和 Groebke-Blackburn-Bienaymé (GBB) 反应就是其中的两种。这篇综述吸收了 Gewald 和 Groebke-Blackburn-Bienayme 反应在合成新型抗菌剂中的应用。文章介绍了合成分子的抗菌特性,概述了其潜在的可药用性:开发新型抗菌剂是当务之急。为实现这一目标,科学界正在开发构建具有潜在抗菌特性的新型结构的新方法。本综述将展示 Gewald、Strecker 和 Groebke-Blackburn-Bienaymé (GBB) 反应在合成抗菌分子中的作用:方法:使用 Sci-finder 搜索工具搜索文章,总结其合成化学过程和分子的抗菌评估结果:这篇综述的重点是利用 Gewald、Strecker 和 Groebke-Blackburn-Bienaymé(GBB)反应合成抗菌分子。结论:本综述将简要概述 Gewald、Strecker 和 Groebke- Blackburn-Bienaymé (GBB) 反应在合成新型抗菌分子中的应用。它包含几种对耐药性和非耐药性微生物菌株具有良好活性的分子。可以进一步研究这些有前景的分子,以开发新型抗生素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in the Synthesis of Antimicrobial Derivatives by using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) Reactions.

Background: Multicomponent reactions are highly useful in synthesizing natural products and bioactive molecules. Out of several MCRs, although utilized widely, some remain neglected in review articles. The Gewald and Groebke-Blackburn-Bienaymé (GBB) reactions are two such reactions. This comprehensive review assimilates applications of Gewald and Groebke-Blackburn- Bienayme reactions in synthesizing novel antimicrobial agents. It presents the antimicrobial properties of the synthesized molecules, providing an overview of their potential druggability.

Objective: Developing novel antimicrobial agents is the need of the hour. Toward this objective, the scientific community is developing new methods for constructing novel architectures with potential antimicrobial properties. This review will showcase the usefulness of the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions in synthesizing antimicrobial molecules.

Methods: The articles are searched by using the Sci-finder search tool and summarize the chemistry of their synthesis and antimicrobial evaluation of the molecules.

Results: This review focuses on synthesizing antimicrobial molecules using the Gewald, Strecker, and Groebke-Blackburn-Bienaymé (GBB) reactions. The antimicrobial activities of the synthesized molecules are also summarized in tables.

Conclusion: This review will briefly overview the application of the Gewald, Strecker, and Groebke- Blackburn-Bienaymé (GBB) reactions in synthesizing novel antimicrobial molecules. It contains several molecules with promising activity against resistant and non-resistant microbial strains. These promising molecules could be studied further to develop novel antibiotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
In Silico Studies of Phytoconstituents to Identify Potential Inhibitors for ERα Protein of Breast Cancer A Preclinical Study on 4-Methyl-N-((4-(trifluoromethoxy)phenyl) carbamoyl)-benzenesulfonamide as a Potent Chemotherapeutic Agent against Liver and Pancreatic Carcinogenesis in Rats: Immunohistochemical and Histopathological Studies Exploring the Diverse Therapeutic Applications of 1, 3-Thiazine: A Comprehensive Review Unveiling the Anti-cancer Potential of Oxadiazole Derivatives: A Comprehensive Exploration of Structure-Activity Relationships and Chemico-Biological Insights Recent Advances in Anticancer Research of Osmium and Rhodium Complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1