{"title":"利用脑电图、脑电图和驾驶质量信号的融合检测驾驶时的嗜睡状态。","authors":"Seyed Mohammad Reza Noori, Mohammad Mikaeili","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the detection of the drowsiness state (DS) for future application such as in the reduction of the road traffic accidents. The electroencephalography, electrooculography, driving quality, and Karolinska sleepiness scale data of 7 males during approximately 20 h of sleep deprivation were recorded. To reduce the eye blink artifact, an automatic mechanism based on the independent component analysis method and Higuchi's fractal dimension has been applied. After recordings, for selecting the best subset of features, a new combined method, called class separability feature selection-sequential feature selection, has been developed. This method reduces the time of calculations from 6807 to 2096 s (by 69.21%) while the classification accuracy remains relatively unchanged. For diagnosis of the DS and classification of the state, a new approach based on a self-organized map network is used. First, using the data obtained from two classes of awareness state (AS) and DS, the network achieved an accuracy of 76.51 ± 3.43%. Using data from three classes of AS, AS/DS (passing from awareness to drowsiness), and DS to the network, an accuracy of 62.70 ± 3.65% was achieved. It is suggested that the DS during driving is detectable with an unsupervised network. </p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"6 1","pages":"39-46"},"PeriodicalIF":1.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals.\",\"authors\":\"Seyed Mohammad Reza Noori, Mohammad Mikaeili\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the detection of the drowsiness state (DS) for future application such as in the reduction of the road traffic accidents. The electroencephalography, electrooculography, driving quality, and Karolinska sleepiness scale data of 7 males during approximately 20 h of sleep deprivation were recorded. To reduce the eye blink artifact, an automatic mechanism based on the independent component analysis method and Higuchi's fractal dimension has been applied. After recordings, for selecting the best subset of features, a new combined method, called class separability feature selection-sequential feature selection, has been developed. This method reduces the time of calculations from 6807 to 2096 s (by 69.21%) while the classification accuracy remains relatively unchanged. For diagnosis of the DS and classification of the state, a new approach based on a self-organized map network is used. First, using the data obtained from two classes of awareness state (AS) and DS, the network achieved an accuracy of 76.51 ± 3.43%. Using data from three classes of AS, AS/DS (passing from awareness to drowsiness), and DS to the network, an accuracy of 62.70 ± 3.65% was achieved. It is suggested that the DS during driving is detectable with an unsupervised network. </p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"6 1\",\"pages\":\"39-46\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals.
This study investigates the detection of the drowsiness state (DS) for future application such as in the reduction of the road traffic accidents. The electroencephalography, electrooculography, driving quality, and Karolinska sleepiness scale data of 7 males during approximately 20 h of sleep deprivation were recorded. To reduce the eye blink artifact, an automatic mechanism based on the independent component analysis method and Higuchi's fractal dimension has been applied. After recordings, for selecting the best subset of features, a new combined method, called class separability feature selection-sequential feature selection, has been developed. This method reduces the time of calculations from 6807 to 2096 s (by 69.21%) while the classification accuracy remains relatively unchanged. For diagnosis of the DS and classification of the state, a new approach based on a self-organized map network is used. First, using the data obtained from two classes of awareness state (AS) and DS, the network achieved an accuracy of 76.51 ± 3.43%. Using data from three classes of AS, AS/DS (passing from awareness to drowsiness), and DS to the network, an accuracy of 62.70 ± 3.65% was achieved. It is suggested that the DS during driving is detectable with an unsupervised network.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.