范式转变?--论医学大型语言模型的伦理问题。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-25 DOI:10.1111/bioe.13283
Thomas Grote, Philipp Berens
{"title":"范式转变?--论医学大型语言模型的伦理问题。","authors":"Thomas Grote,&nbsp;Philipp Berens","doi":"10.1111/bioe.13283","DOIUrl":null,"url":null,"abstract":"<p>After a wave of breakthroughs in image-based medical diagnostics and risk prediction models, machine learning (ML) has turned into a normal science. However, prominent researchers are claiming that another paradigm shift in medical ML is imminent—due to most recent staggering successes of large language models—from single-purpose applications toward generalist models, driven by natural language. This article investigates the implications of this paradigm shift for the ethical debate. Focusing on issues like trust, transparency, threats of patient autonomy, responsibility issues in the collaboration of clinicians and ML models, fairness, and privacy, it will be argued that the main problems will be continuous with the current debate. However, due to functioning of large language models, the complexity of all these problems increases. In addition, the article discusses some profound challenges for the clinical evaluation of large language models and threats to the reproducibility and replicability of studies about large language models in medicine due to corporate interests.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bioe.13283","citationCount":"0","resultStr":"{\"title\":\"A paradigm shift?—On the ethics of medical large language models\",\"authors\":\"Thomas Grote,&nbsp;Philipp Berens\",\"doi\":\"10.1111/bioe.13283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>After a wave of breakthroughs in image-based medical diagnostics and risk prediction models, machine learning (ML) has turned into a normal science. However, prominent researchers are claiming that another paradigm shift in medical ML is imminent—due to most recent staggering successes of large language models—from single-purpose applications toward generalist models, driven by natural language. This article investigates the implications of this paradigm shift for the ethical debate. Focusing on issues like trust, transparency, threats of patient autonomy, responsibility issues in the collaboration of clinicians and ML models, fairness, and privacy, it will be argued that the main problems will be continuous with the current debate. However, due to functioning of large language models, the complexity of all these problems increases. In addition, the article discusses some profound challenges for the clinical evaluation of large language models and threats to the reproducibility and replicability of studies about large language models in medicine due to corporate interests.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bioe.13283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bioe.13283\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"98","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bioe.13283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在基于图像的医疗诊断和风险预测模型领域取得突破性进展后,机器学习(ML)已成为一门普通科学。然而,著名研究人员声称,由于大型语言模型最近取得了惊人的成功,医学 ML 的另一个范式转变迫在眉睫--从单一用途应用转向由自然语言驱动的通用模型。本文探讨了这种范式转变对伦理辩论的影响。本文将重点讨论信任、透明度、对患者自主权的威胁、临床医生与 ML 模型合作中的责任问题、公平性和隐私等问题,并认为这些主要问题将与当前的辩论保持一致。然而,由于大型语言模型的运作,所有这些问题的复杂性都会增加。此外,文章还讨论了大型语言模型的临床评估面临的一些深刻挑战,以及企业利益对大型语言模型在医学研究中的可重复性和可复制性造成的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A paradigm shift?—On the ethics of medical large language models

After a wave of breakthroughs in image-based medical diagnostics and risk prediction models, machine learning (ML) has turned into a normal science. However, prominent researchers are claiming that another paradigm shift in medical ML is imminent—due to most recent staggering successes of large language models—from single-purpose applications toward generalist models, driven by natural language. This article investigates the implications of this paradigm shift for the ethical debate. Focusing on issues like trust, transparency, threats of patient autonomy, responsibility issues in the collaboration of clinicians and ML models, fairness, and privacy, it will be argued that the main problems will be continuous with the current debate. However, due to functioning of large language models, the complexity of all these problems increases. In addition, the article discusses some profound challenges for the clinical evaluation of large language models and threats to the reproducibility and replicability of studies about large language models in medicine due to corporate interests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1