缺氧条件下水稻田土壤中铁酸盐介导的甲烷固氮作用

IF 5.1 Q1 ECOLOGY ISME communications Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae030
Linpeng Yu, Rong Jia, Shiqi Liu, Shuan Li, Sining Zhong, Guohong Liu, Raymond Jianxiong Zeng, Christopher Rensing, Shungui Zhou
{"title":"缺氧条件下水稻田土壤中铁酸盐介导的甲烷固氮作用","authors":"Linpeng Yu, Rong Jia, Shiqi Liu, Shuan Li, Sining Zhong, Guohong Liu, Raymond Jianxiong Zeng, Christopher Rensing, Shungui Zhou","doi":"10.1093/ismeco/ycae030","DOIUrl":null,"url":null,"abstract":"<p><p>Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the <sup>15</sup>N fixation rate by 13-fold from 0.02 to 0.28 μmol <sup>15</sup>N<sub>2</sub> (g dry weight soil) <sup>-1</sup> d<sup>-1</sup>. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that <i>Methylocystis</i>, <i>Methylophilaceae</i>, and <i>Methylomicrobium</i> were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (<sup>13</sup>C or <sup>15</sup>N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that <i>Methylocystis</i> and <i>Methylophilaceae</i> had the potential to perform methane-induced BNF and likely utilized riboflavin and <i>c</i>-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae030"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ferrihydrite-mediated methanotrophic nitrogen fixation in paddy soil under hypoxia.\",\"authors\":\"Linpeng Yu, Rong Jia, Shiqi Liu, Shuan Li, Sining Zhong, Guohong Liu, Raymond Jianxiong Zeng, Christopher Rensing, Shungui Zhou\",\"doi\":\"10.1093/ismeco/ycae030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the <sup>15</sup>N fixation rate by 13-fold from 0.02 to 0.28 μmol <sup>15</sup>N<sub>2</sub> (g dry weight soil) <sup>-1</sup> d<sup>-1</sup>. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that <i>Methylocystis</i>, <i>Methylophilaceae</i>, and <i>Methylomicrobium</i> were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (<sup>13</sup>C or <sup>15</sup>N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that <i>Methylocystis</i> and <i>Methylophilaceae</i> had the potential to perform methane-induced BNF and likely utilized riboflavin and <i>c</i>-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.</p>\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\"4 1\",\"pages\":\"ycae030\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismeco/ycae030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲烷细菌的生物固氮(BNF)已被证明在保持肥力方面发挥着重要作用。然而,这一过程仍仅限于在氧气充足的情况下进行有氧甲烷氧化。在缺氧环境中,甲烷营养细菌是否以及如何进行 BNF 仍是一个未知数。在此,我们用含铁的矿物盐培养基培养水稻田土壤,以便在有甲烷(20%,v/v)和氧气限制(0.27%,v/v)的情况下富集甲烷营养细菌。由此产生的微生态系统表明,依赖于铁酸盐的有氧甲烷氧化作用对总 BNF 的贡献很大(81%),使 15N 固定率增加了 13 倍,从 0.02 μmol 15N2(克干重土壤)-1 d-1 增加到 0.28 μmol 15N2(克干重土壤)-1 d-1。如果不使用铁酸盐,BNF 会减少 97%,这表明铁酸盐参与了甲烷营养型 BNF。DNA 稳定同位素探测表明,甲烷菌、嗜甲烷菌和甲烷微生物是将标记同位素(13C 或 15N)同化到生物量中的主要甲烷营养体/甲基营养体。元基因组分选结合电化学分析表明,甲基孢囊菌和嗜甲氧微生物有可能进行甲烷诱导的 BNF,并很可能利用核黄素和 c 型细胞色素作为电子载体进行亚铁还原。研究得出的结论是,甲烷营养体/甲基营养体单独或与铁还原菌共同介导了亚铁酸盐的甲烷营养体BNF。总之,这项研究揭示了以前被忽视的铁依赖性有氧甲烷氧化与 BNF 的明显耦合,并增进了我们对缺氧区甲烷营养型 BNF 的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferrihydrite-mediated methanotrophic nitrogen fixation in paddy soil under hypoxia.

Biological nitrogen fixation (BNF) by methanotrophic bacteria has been shown to play an important role in maintaining fertility. However, this process is still limited to aerobic methane oxidation with sufficient oxygen. It has remained unknown whether and how methanotrophic BNF proceeds in hypoxic environments. Herein, we incubated paddy soils with a ferrihydrite-containing mineral salt medium to enrich methanotrophic bacteria in the presence of methane (20%, v/v) under oxygen constraints (0.27%, v/v). The resulting microcosms showed that ferrihydrite-dependent aerobic methane oxidation significantly contributed (81%) to total BNF, increasing the 15N fixation rate by 13-fold from 0.02 to 0.28 μmol 15N2 (g dry weight soil) -1 d-1. BNF was reduced by 97% when ferrihydrite was omitted, demonstrating the involvement of ferrihydrite in methanotrophic BNF. DNA stable-isotope probing indicated that Methylocystis, Methylophilaceae, and Methylomicrobium were the dominant methanotrophs/methylotrophs that assimilated labeled isotopes (13C or 15N) into biomass. Metagenomic binning combined with electrochemical analysis suggested that Methylocystis and Methylophilaceae had the potential to perform methane-induced BNF and likely utilized riboflavin and c-type cytochromes as electron carriers for ferrihydrite reduction. It was concluded that ferrihydrite mediated methanotrophic BNF by methanotrophs/methylotrophs solely or in conjunction with iron-reducing bacteria. Overall, this study revealed a previously overlooked yet pronounced coupling of iron-dependent aerobic methane oxidation to BNF and improves our understanding of methanotrophic BNF in hypoxic zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent association between Trichodesmium colonies and calcifying amoebae. Taxon-specific contributions of microeukaryotes to biological carbon pump in the Oyashio region. Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites. Cover crop monocultures and mixtures enhance bacterial abundance and functionality in the maize root zone. Genomic dissection of Escherichia marmotae provides insights into diversity and pathogenic potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1